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Robust atmospheric entry guidance for blunt-body entry vehicles with bank angle modulation
is achieved by combining online atmospheric density estimation with an updated version of
the Convex Predictor-corrector Entry Guidance (CPEG) algorithm. During atmospheric
entry, a square-root Extended Kalman Filter is used to estimate a ratio between the density of
the experienced atmosphere with that of an approximate model, which is spline-fit based on
MarsGRAM perturbed data. The information from this filter is used to modify the approximate
model used by the guidance algorithm. The proposed update to CPEG includes time as a
decision variable, dramatically improving the robustness of the algorithm. CPEG predicts the
trajectory at each control call with a nonlinear simulation followed by a single convex trajectory
optimization problem that updates the commanded bank angle derivative. The robustness and
performance of this estimator and controller guidance architecture are demonstrated on a wide
range of realistic Martian atmospheres and is able to achieve state-of-the-art accuracy with
respect to altitude-triggered parachute deployment.

Nomenclature

𝐴 = entry vehicle reference area, m2

𝑎𝐷 = acceleration due to aerodynamic drag, m/s2

𝑎𝑔 = acceleration due to gravity, m/s2

𝑎𝐿 = acceleration due to aerodynamic lift, m/s2

𝐷 = magnitude of drag acceleration, m/s2

𝑒 = aerodynamic basis vector
𝐹 = matrix square-root of the estimate covariance matrix
𝑘𝜌 = ratio of observed to approximate atmospheric densities
𝐿 = magnitude of lift acceleration, m/s2

𝑚 = entry vehicle mass, kg
𝑟 = position of the entry vehicle in a Mars-fixed frame, m
𝑣 = velocity of the entry vehicle in a Mars-fixed frame, m/s
𝑉 = sensor noise covariance
𝑤 = wind vector in a Mars-fixed frame, m/s
𝑊 = process noise covariance
` = state estimate
𝜔 = angular velocity of Mars, rad/s
𝜌 = atmospheric density, kg/m3

𝜎 = entry vehicle bank angle, rad
Σ = estimate covariance matrix

I. Introduction
Entry into the Martian atmosphere refers to the phase of Entry, Descent, and Landing (EDL) that occurs between

the point at which the hypersonic entry vehicle first interfaces with the planet’s sensible atmosphere and the point at
which the supersonic parachute is deployed. It is during this portion of the EDL that the vehicle is subjected to the
most demanding flight conditions, during which both peak acceleration and peak heating are experienced [1]. Large
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uncertainties in models of the Martian atmospheric environment make entry guidance challenging, and significantly
degrade landing accuracy, where the landing accuracy is the distance between the landing target site and the actual
landing site. Actual atmospheric density can deviate from predictions by a factor of two or more [2], requiring guidance
laws to combat uncertainty with frequent re-planning and reliance on conservative initial entry conditions. These
approaches ultimately reduce performance and limit the potential landing sites that can be accessed on Mars [3]. To
enable precision landing, which could potentially increase the number of reachable sites of high scientific interest,
we propose a new approach to entry guidance that can strategically account for and reduce the atmospheric model
uncertainty during guided entry. In the last few decades, predictor-corrector guidance algorithms have become the

Fig. 1 Cartoon representation of entry, descent, and landing.

state-of-the-art; these have offered steadily improving landing accuracy with modest computational costs. These
methods, like PredGuid [4, 5] and FNPEG [6], predict the trajectory of the entry vehicle with a nonlinear simulation,
then use derivative or “sensitivity” information from the simulation to improve or “correct” the control plan [7, 8]. This
predictor-corrector framework offers improved landing accuracy compared to Apollo-era entry guidance methods [9]
while being relatively simple to implement with low computational complexity. However, a significant drawback of
traditional predictor-corrector guidance methods is their inability to generate complex control policies; many such
methods are restricted to solving for a static bank angle, which means that the initial bank angle control profile predicted
for the whole entry phase is considered constant; however, only during the prediction and correction phase, the guidance
uses independent downrange and crossrange control to determine when the sign of the bank angle should flip. This
simplicity severely limits the sophistication of the guidance method, and the resulting performance can chatter with
multiple aggressive bank angle switches. Another limitation of existing predictor-corrector guidance strategies is their
inability to incorporate real-time information about the Martian atmosphere, which is the largest source of uncertainty
in the vehicle’s dynamics, for prediction and correction purposes.

Recently, there has been a growing interest in trajectory optimization methods for open-loop entry guidance for both
Earth and Mars. This approach, in which the guidance problem is formulated as a numerical optimization problem,
enables algorithms that can reason about the dynamics of the vehicle and constraints like actuator limits, state bounds,
and heating limits. These optimization problems can be solved by a variety of numerical methods. As an example,
sequential convex programming, in which a non-convex optimization problem is iteratively convexified and solved until
convergence, has recently become popular [10–15]. Alternatively, the trajectory optimization problem can be converted
into a nonlinear program [16] and solved by a variety of off-the-shelf solvers, like SNOPT [17] or Ipopt [18], or by a
more specialized trajectory optimization solver like ALTRO [19, 20]. While these trajectory optimization guidance
methods offer more sophisticated and performant control plans than classical predictor-corrector methods, they can
be prohibitively complex to implement on resource-constrained flight computers, and are still unable to account for
real-time information about the atmosphere.

A middle ground between simple predictor-corrector guidance schemes and offline trajectory optimization is the
Convex Predictor-corrector Entry Guidance algorithm (CPEG) [21]. This method uses the same predictor-corrector
framework as existing methods, but instead of solving for a simple static bank angle, it forms a convex trajectory
optimization problem that solves for the correction to the nominal control plan. This approach enables the direct
inclusion of any actuator or safety constraints and the ability to reason about complex control policies and the dynamics
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of the vehicle over the whole trajectory. By forming the convex trajectory optimization problem with a dynamics model
linearized about the prediction rollout, the problem is guaranteed to always be feasible, and the convexity of the problem
guarantees that an optimal solution can be computed in polynomial time [22].

This work proposes an improvement to the CPEG algorithm that includes time as an optimization variable, allowing
for the generation of trajectories with a free final time. This modification allows for significantly more flexibility when
handling scenarios with multiple potentially successful control policies, since many trajectories can all be expressed
using the same number of optimization variables. The absence of this feature in the original CPEG algorithm resulted in
a lack of robustness when run online with significant model uncertainty. Additionally, this work directly addresses the
main source of the uncertainty in the vehicle dynamics – the atmospheric density – by estimating information about the
atmosphere online and including it in the approximate model used by CPEG. Our specific contributions include:

1) A free-final-time extension of the Convex Predictor-corrector Entry Guidance algorithm
2) An estimation architecture for atmospheric density and an atmospheric approximate model
3) Validation of the combined controller and estimator on realistic density and wind dispersions from MarsGRAM

[23]
This paper proceeds by first describing the dynamics of the entry vehicle in Cartesian coordinates in Section II,

followed by the free-final-time version of CPEG in Section III. The atmospheric density estimation approach is detailed
in Section IV. Numerical experiments using Monte-Carlo sampling of atmospheric parameters from MarsGRAM are
presented in Section V. Finally, Section VI summarizes our conclusion.

II. Entry Vehicle Dynamics
This work considers a blunt-body entry vehicle in the Martian atmosphere with the ability to modulate its bank angle

𝜎 ∈ R. These entry vehicles are traditionally described and simulated in spherical coordinates using the “Vinh” model
[6, 11, 24–28]. While this model is ubiquitous and well-studied, it suffers from numerical scaling issues due to the state
vector including angles as well as distance and velocity, and is highly nonlinear in both the state and the control input.
These shortcomings make optimization challenging and numerically unreliable. Alternatively, the state and dynamics of
the entry vehicle can be equivalently described in a Mars-fixed Cartesian reference frame. This parametrization is more
common in the powered-descent guidance literature [29–31], and has much better numerical scaling, as well as linear
kinematics, both of which make it a better fit for optimization-based control methods as detailed in [32]. The dynamics
of the entry vehicle with this state representation are the following:

¤𝑟 = 𝑣, (1)
¤𝑣 = 𝑎𝐿 + 𝑎𝐷 + 𝑎𝑔 − 2(𝜔 × 𝑣) − 𝜔 × (𝜔 × 𝑟). (2)

The aerodynamic accelerations from lift and drag are dependent on the vehicle velocity relative to the atmosphere,
including wind. The wind vector 𝑤 is expressed in the Mars-fixed frame, and the relative velocity is simply 𝑣𝑟𝑒𝑙 = 𝑣 +𝑤.
The magnitude of the lift and drag accelerations can then be computed as follows:

𝐿 =
1

2𝑚
𝜌𝐴𝐶𝐿 ∥𝑣𝑟𝑒𝑙 ∥2, (3)

𝐷 =
1

2𝑚
𝜌𝐴𝐶𝐷 ∥𝑣𝑟𝑒𝑙 ∥2. (4)

The hypersonic coefficients, 𝐶𝐿 and 𝐶𝐷 have been evaluated through the Newtonian flow theory for a blunted body,
specifically:

𝐶𝐴 = (1 − sin 𝛿4)
𝑟2
𝑛𝑜𝑠𝑒

𝑟2
𝑏𝑎𝑠𝑒

+ (2 sin 𝛿2 cos𝛼2 + cos 𝛿2 sin𝛼2)
(
1 −

𝑟2
𝑛𝑜𝑠𝑒

𝑟2
𝑏𝑎𝑠𝑒

cos 𝛿2

)
, (5)

𝐶𝑁 =

(
1 −

𝑟2
𝑛𝑜𝑠𝑒

𝑟2
𝑏𝑎𝑠𝑒

cos 𝛿2

)
cos 𝛿2 sin 2𝛼, (6)

𝐶𝐿 = 𝐶𝑁 cos𝛼 − 𝐶𝐴 sin𝛼, (7)
𝐶𝐷 = 𝐶𝐴 cos𝛼 + 𝐶𝑁 sin𝛼, (8)

where 𝐶𝐴 is the axial force coefficient, 𝐶𝑁 is the normal force coefficient, 𝛿 is the cone angle of the blunted-cone
vehicle, 𝛼 is the angle of attack, 𝑟𝑏𝑎𝑠𝑒 is the base radius, 𝑟𝑛𝑜𝑠𝑒 is the nose radius of the hypersonic vehicle.
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The direction of the drag acceleration is in the opposite direction of the relative velocity, expressed as:

𝑎𝐷 = −𝐷 𝑣𝑟𝑒𝑙

∥𝑣𝑟𝑒𝑙 ∥
. (9)

The lift acceleration is directed using the bank angle 𝜎, and is modeled and represented with two basis vectors 𝑒1 ∈ R3

and 𝑒2 ∈ R3, where together they span the plane orthogonal to the relative velocity of the vehicle in the atmosphere.
These aerodynamic basis vectors are constructed as the following:

𝑒1 =
𝑟 × 𝑣𝑟𝑒𝑙

∥𝑟 × 𝑣𝑟𝑒𝑙 ∥
, (10)

𝑒2 =
𝑣𝑟𝑒𝑙 × 𝑒1
∥𝑣𝑟𝑒𝑙 × 𝑒1∥

. (11)

Using these basis vectors, the lift acceleration can be computed as the following:

𝑎𝐿 = 𝐿 (sin(𝜎)𝑒1 + cos(𝜎)𝑒2). (12)

The acceleration due to gravity can be calculated using any number of established methods ranging in fidelity from
simple two-body gravity [33], to a more complex spherical harmonic expansion of the geopotential [34, 35].

The largest amount of uncertainty in the dynamics of the entry vehicle comes from the atmosphere. Both the
atmospheric density 𝜌, as well as the wind vector 𝑤 are highly uncertain. To visualize this uncertainty, Mars GRAM
[2] was used to generate dispersions for these two parameters, which are shown in Fig. 2 and Fig. 3. A summary of
the parameters used to run Mars GRAM is presented in Table 1. For the generation of atmospheric data points in
highly perturbed environments, Mars GRAM not only uses random Monte Carlo samples that re-initialize the random
number seed (NR1) for each sample but also has been set for different zoffsets, which are constant height offsets that
modify the atmospheric density. Specifically, positive offsets increase density, while negative offsets decrease density.
In addition, rpscale, the random perturbation scale was also set to the maximum, with increasing this factor intensifying
the magnitude of the perturbation. The data have also been evaluated in the context of a global dust storm, through
INTENS, which changes the dust storm intensity.

Table 1 Mars GRAM nominal and dispersion parameters

Parameter Value Parameter Value
Initial Altitude, km 125 NR1 [1,5001]

Date 6 August 2012 zoffset, km Uniform Dist., [-3.25,3.25]
Time 5:30:00 rpscale 2

Final Altitude, km 10 INTENS 2

Since aerodynamic acceleration is the dominant term in the dynamics at the high speeds an entry vehicle experiences,
the uncertainty in the atmospheric density results in a highly uncertain dynamics model. The uncertainty in the wind
contributes to the model uncertainty, but less so than the density.

III. CPEG
Predictor-corrector guidance algorithms are a simple and effective way to control underactuated systems like the entry

vehicle. These methods all share a general framework in which a nominal control policy is used to simulate a predicted
trajectory, then a correction is made to the nominal control policy based on this prediction. Predictor-corrector methods
have been the state of the art for entry guidance of blunt-body vehicles, but they are not without their shortcomings.
Existing methods like FNPEG are only able to reason about simple static bank angle policies, and rely on independent
crossrange and downrange logic to modulate the bank angle [7]. Alternatively, offline trajectory optimization allows
for more complex control policies and the direct inclusion of constraints, but is significantly more expensive than
predictor-corrector methods. A trajectory optimization problem in its most general form is the following,
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Fig. 2 Dispersion of the atmospheric density as a function of altitude calculated with Mars GRAM. The
dynamics of the entry vehicle are heavily influenced by this density, and the dramatic uncertainty of this value
motivates the need for more robust guidance schemes.
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Fig. 3 Dispersions of the east and north wind velocities in the Martian atmosphere as a function of altitude
calculated with Mars GRAM. This range of atmospheric wind profiles is used in the Monte Carlo testing of the
proposed entry guidance algorithm.
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minimize
𝑥1:𝑁 , 𝑢1:𝑁−1

ℓ𝑁 (𝑥𝑁 ) +
𝑁−1∑︁
𝑘=1

ℓ𝑘 (𝑥𝑘 , 𝑢𝑘)

subject to 𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘) 𝑘 = 1 . . . 𝑁 − 1, (13)
𝑔𝑘 (𝑥𝑘 , 𝑢𝑘) ≤ 0 𝑘 = 1 . . . 𝑁 − 1,
𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥 𝑘 = 1 . . . 𝑁 − 1,
𝑥𝑚𝑖𝑛 ≤ 𝑥𝑘 ≤ 𝑥𝑚𝑎𝑥 𝑘 = 1 . . . 𝑁

where 𝑥 is the state, 𝑢 is the control, ℓ is the cost function, 𝑓 (𝑥, 𝑢) is the discrete dynamics function, and 𝑔(𝑥, 𝑢) is a
general constraint function. Problem (13) can be solved with a multitude of available trajectory optimization solvers,
but they are prohibitively complex to run on board the entry vehicle.

A. Baseline CPEG
The Convex Predictor-corrector Entry Guidance (CPEG) algorithm, introduced in [32], seeks to find a middle ground

between simple predictor-corrector guidance methods and offline trajectory optimization. This is achieved by adopting
the predictor-corrector framework, but solving a convex trajectory optimization problem for the correction instead of a
simple update to a static bank angle like in FNPEG. This approach allows CPEG to reason about sophisticated control
trajectories as well as the dynamics of the vehicle throughout the entirety of the trajectory. The convex optimization
problem that makes up the correction portion of the algorithm is guaranteed to be feasible, and its optimum can be
solved for at real-time rates [36].

In order for problem (13) to be convex, the cost and constraint functions must be convex. This means that problems
with nonlinear dynamics, like the entry vehicle, must be approximated. We linearize the discrete dynamics function
𝑓 (𝑥, 𝑢) about the predicted trajectory (𝑥, �̄�):

𝑥𝑘+1 + 𝛿𝑥𝑘+1 ≈ 𝑓 (𝑥𝑘 , �̄�𝑘) + 𝐴𝑘𝛿𝑥𝑘 + 𝐵𝑘𝛿𝑢𝑘 , (14)

where 𝐴𝑘 and 𝐵𝑘 are the following Jacobians,

𝐴𝑘 =
𝜕 𝑓 (𝑥𝑘 , 𝑢𝑘)

𝜕𝑥𝑘

����
�̄�𝑘 ,�̄�𝑘

, (15)

𝐵𝑘 =
𝜕 𝑓 (𝑥𝑘 , 𝑢𝑘)

𝜕𝑢𝑘

����
�̄�𝑘 ,�̄�𝑘

. (16)

Since the prediction was dynamically feasible, and 𝑥𝑘+1 = 𝑓 (𝑥𝑘 , �̄�𝑘), equation (14) is reduced to

𝛿𝑥𝑘+1 ≈ 𝐴𝑘𝛿𝑥𝑘 + 𝐵𝑘𝛿𝑢𝑘 . (17)

From here, the convex correction problem is posed as,

minimize
𝛿𝑥1:𝑁 , 𝛿𝑢1:𝑁−1

ℓ𝑁 (𝑥𝑁 + 𝛿𝑥𝑁 ) +
𝑁−1∑︁
𝑘=1

ℓ𝑘 (𝑥𝑘 + 𝛿𝑥𝑘 , �̄�𝑘 + 𝛿𝑢𝑘)

subject to 𝛿𝑥𝑘+1 = 𝐴𝑘𝛿𝑥𝑘 + 𝐵𝑘𝛿𝑢𝑘 𝑘 = 1 . . . 𝑁 − 1, (18)
𝑔𝑘 (𝑥𝑘 + 𝛿𝑥𝑘 , �̄�𝑘 + 𝛿𝑢𝑘) ≤ 0 𝑘 = 1 . . . 𝑁 − 1,
𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥 𝑘 = 1 . . . 𝑁 − 1,
𝑥𝑚𝑖𝑛 ≤ 𝑥𝑘 ≤ 𝑥𝑚𝑎𝑥 𝑘 = 1 . . . 𝑁,
𝛿𝑢𝑚𝑖𝑛 ≤ 𝛿𝑢𝑘 ≤ 𝛿𝑢𝑚𝑎𝑥 𝑘 = 1 . . . 𝑁 − 1,
𝛿𝑥𝑚𝑖𝑛 ≤ 𝛿𝑥𝑘 ≤ 𝛿𝑥𝑚𝑎𝑥 𝑘 = 1 . . . 𝑁,

where the bounds on 𝛿𝑥 and 𝛿𝑢 serve as a customizable trust region that ensures the step direction stays within a region
of the state space where the linearization is accurate [37]. Since the linearization is evaluated about the dynamically
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feasible predicted trajectory, this optimization problem is guaranteed to have a feasible solution of all zeros for 𝛿𝑥 and
𝛿𝑢, eliminating one of the largest vulnerabilities in real-time optimization-based control.

The full baseline CPEG algorithm is shown in Algorithm 1, where an initial condition and nominal control policy
are used to simulate the entry vehicle until parachute deployment (the prediction), a linearized model is evaluated about
this predicted trajectory, and a convex trajectory optimization problem (18) is solved for the correction.

Algorithm 1 CPEG Algorithm
1: function CEPG(𝑥0,𝑈 ⊲ nominal control plan
2: �̄�, �̄� = simulate(𝑥0,𝑈) ⊲ predict trajectory
3: 𝐴, 𝐵 = linearize( �̄�, �̄�) ⊲ linearize about prediction
4: 𝛿𝑋, 𝛿𝑈 = cvx( �̄�, �̄�, 𝐴, 𝐵) ⊲ solve for correction
5: 𝑈 += 𝛿𝑈 ⊲ correct control plan
6: return 𝑈 ⊲ return updated control plan

B. Variable-Time CPEG
We now extend CPEG to handle free-final-time problems where time is a decision variable. In the baseline algorithm,

the prediction is done with a fixed time step and the simulation simply terminates when a parachute deployment trigger
is satisfied. This means that the corrected control policy can result in a subsequent prediction with a different number
of time steps. This characteristic of the baseline algorithm results in decreased robustness when there are multiple
cost-equivalent trajectories in the cost landscape. In this case, CPEG can chatter between two or more control policies
that are of different lengths but have equal cost.

To address this issue, an updated version of CPEG is proposed in this work that treats time as an explicit optimization
variable, allowing for the time of parachute deployment to effectively be decided by the optimization solver, instead of
solely by the prediction step. This updated version of CPEG is significantly more robust to chattering. The free-final-time
modification can be incorporated into the existing CPEG framework by simply including the time step for each knot
point as a control input. The resulting state variable 𝑥 ∈ R7 and control variable 𝑢 ∈ R2 are the following:

𝑥 = [𝑟𝑇 , 𝑣𝑇 , 𝜎]𝑇 , (19)
𝑢 = [ ¤𝜎,Δ𝑡]𝑇 , (20)

where Δ𝑡 ∈ R is the size of the time step. We use the following cost function:

𝐽 (𝑥, 𝑢) = 𝛾∥𝑟𝑁 − 𝑟target∥2 +
𝑁−1∑︁
𝑘=1

𝛽 ¤𝜎2
𝑘 + (Δ𝑡𝑘 − Δ𝑡target)2, (21)

where 𝛾 ∈ R+ and 𝛽 ∈ R+ are positive cost weights, 𝑟target ∈ R3 is the target position, and Δ𝑡target ∈ R+ is target time-step
size. These weights should be tuned such that the largest penalty is applied to the terminal position accuracy, and a
sufficient penalty exists on the time-step size to keep the time steps positive and reasonable.

Each control correction requires the solution of a convex Quadratic Program (QP), of which there are many fast
and robust solution methods available. This work utilized a custom implementation of the primal-dual interior point
solver detailed in [36] and [38]. At the start of the QP solver, the inequality constraints are temporarily omitted and the
closed-form solution to the equality-constrained QP is checked for feasibility. In many cases, the inequality constraints
are inactive at the optimum, and this approach is able to solve the QP at the cost of solving a single linear system.

IV. Atmospheric Estimation
During atmospheric entry guidance, the largest source of uncertainty in the dynamics comes from the atmosphere.

The density of the atmosphere is highly variable based on the time of the year, weather, dust conditions, temperature,
and space weather. Mars GRAM [2] is the highest fidelity tool available for the simulation of the Martian atmosphere,
and it was used to sample 5,000 potential atmospheric density profiles. 1,000 of these profiles are shown in Fig. 2,
where there is significant uncertainty at higher altitudes, with better certainty at lower altitudes, though still varying by
10 − 20%. Because of this uncertainty, open-loop control policies perform poorly.
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To manage this uncertainty, we propose a simple and effective method for estimating critical information about
the atmospheric density online during the entry process. The density of the Martian atmosphere roughly follows an
exponential law, such that the difference in density between the surface and 125 km altitude, which is considered in this
study as the entry interface, spans several orders of magnitude. Because of this large variation in magnitude, estimating
the density directly in a Kalman Filter is numerically challenging. Another possible approach to tackle atmospheric
uncertainties would be to directly model the atmosphere as an exponential and estimate the surface density and scale
height [39], but this approach suffers from severe ill-conditioning because the exponential dramatically amplifies errors
at higher altitudes [40, 41].

In place of estimating some parametrized version of the atmospheric density profile from scratch, we use an approach
similar to [42] where a Kalman filter for estimating the ratio between the observed and nominal atmospheres:

𝑘𝜌 =
𝜌observed
𝜌nominal

, (22)

where 𝜌nominal is computed offline and stored. Estimating 𝑘𝜌 directly is better behaved numerically because the estimator
is simply looking to modify an existing approximate density profile, and the estimated value will always be near 1,
regardless of altitude. The state and control for this filter are the following:

𝑥kf = [𝑟𝑇 , 𝑣𝑇 , 𝜎, 𝑘𝜌]𝑇 , (23)
𝑢kf = ¤𝜎, (24)

where the dynamics for this state representation are the same as in section II, with the exception that 𝜌 = 𝑘𝜌 · 𝜌approximate.
The measurement model is assumed to come directly from the navigation system, with additive Gaussian white noise.
To estimate 𝑘𝜌 effectively in the presence of highly variable dynamic pressure, a Square-Root Extended Kalman Filter
(SQEKF) is used that allows for twice the dynamic range of the standard Extended Kalman Filter (EKF) [43]. This
increased range and numerical robustness help to manage the potentially ill-conditioned covariance matrices present
during entry guidance. A simple version of an SQEKF is demonstrated in [44] that leverages a highly mature QR
decomposition routine to handle a majority of the computation [45].

The SQEKF takes a system of the following form:

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘 , (25)
𝑦𝑘 = 𝑔(𝑥𝑘) + 𝑣𝑘 , (26)

where 𝑓 (𝑥, 𝑢) is the discrete time dynamics function, 𝑔(𝑥) is the measurement function, and 𝑤 ∼ N(0,𝑊) and
𝑣 ∼ N(0, 𝑉) are the process and sensor noise terms, respectively. The SQEKF is able to achieve better precision than
the standard EKF by representing covariance matrices by their upper-triangular matrix square roots (Cholesky factors)
[46–48]. Using this notation, the SQEKF algorithm from [44] is shown in Algorithm , where Γ𝑊 and Γ𝑉 are the upper
triangular Cholesky factorizations of 𝑊 and 𝑉 , and the function qrr returns the upper triangular 𝑅 factor from a QR
decomposition [19, 45]. The mean of the estimate is `𝑡 |𝑡 , and the covariance Σ is represented with its matrix square
root 𝐹 such that 𝐹𝑇𝐹 = Σ. The performance of this filter on a realistic atmosphere sample from Mars GRAM is shown
in Fig. 4.

V. Numerical Experiments
To validate the combined controller and estimator architecture, 1,000 Monte Carlo runs were used to test the

robustness and performance of the algorithms. Each Monte Carlo run consists of an atmospheric density and wind
sampled from Mars GRAM, as shown in Fig. 2 and Fig. 3. An initial position dispersion with a standard deviation of 1
km and initial bank angle dispersion of 5 degrees was used to further disambiguate between runs. The initial conditions
coincide with the Mars Sample Return (MSL) initial conditions; specifically, the initial position had a mean altitude of
125 km, with a flight path angle of -15.5 degrees and entry velocity of 5.85 km/s [49, 50]. The target was 632 km down
range and 7.9 km cross range, with a parachute deployment triggered at 10 km altitude. Furthermore, the hypersonic
vehicle considered has the same characteristics of the MSL vehicle; specifically, the vehicle is a 70 degrees sphere-cone,
nose radius equal to 1.125 m, a base radius equal to 2.25 m, and an entry mass of 2800 kg [49].

The variable-time CPEG algorithm was run with a nominal time step size of 2 seconds until the length of the
trajectory was less than 50 knot points, at which point the nominal time step was lowered to 0.1 seconds. This algorithm
was run at 5 Hz with one convex correction solution at each time step, 94% of which were solved in a single iteration of
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Algorithm 2 Square Root Extended Kalman Filter
1: function sqkf(`𝑡 |𝑡 , 𝐹𝑡 |𝑡 , 𝑢𝑡 , 𝑦𝑡+1, Γ𝑊 , Γ𝑉 )
2:
3: 𝐴𝑡 = 𝜕 𝑓 /𝜕𝑥 |`𝑡 |𝑡 ,𝑢𝑡 ⊲ dynamics Jacobian
4: `𝑡+1 |𝑡 = 𝑓 (`𝑡 |𝑡 , 𝑢𝑡 ) ⊲ state prediction
5: 𝐹𝑡+1 |𝑡 = qrr (𝐹𝑡 |𝑡 𝐴𝑇

𝑡 , Γ𝑊 ) ⊲ covariance prediction
6:
7: 𝐶𝑡 = 𝜕𝑔/𝜕𝑥 |`𝑡+1|𝑡 ⊲ measurement Jacobian
8: 𝑧 = 𝑦𝑡+1 − 𝑔(`𝑡+1 |𝑡 ) ⊲ measurement innovation
9: 𝐺 = qrr (𝐹𝑡+1 |𝑡𝐶

𝑇
𝑡 , Γ𝑉 ) ⊲ innovation covariance

10: 𝐿 = [𝐺−1 (𝐺−𝑇𝐶𝑡 )𝐹𝑇
𝑡+1 |𝑡𝐹𝑡+1 |𝑡 ]𝑇 ⊲ Kalman gain

11:
12: `𝑡+1 |𝑡+1 = `𝑡+1 |𝑡 + 𝐿𝑧 ⊲ state update
13: 𝐹𝑡+1 |𝑡+1 = qrr (𝐹𝑡+1 |𝑡 (𝐼 − 𝐿𝐶𝑡 )𝑇 , Γ𝑉𝐿𝑇 ) ⊲ covariance update
14:
15: return(`𝑡+1 |𝑡+1, 𝐹𝑡+1 |𝑡+1)

0.7 0.8 0.9 1 1.1 1.2 1.3
10

20

30

40

50

60

𝑘𝜌

A
lti

tu
de

,k
m

True 𝑘𝜌
Estimated 𝑘𝜌
3𝜎

Fig. 4 Results from the atmospheric density estimator during entry guidance where the ratio between the actual
and nominal densities, 𝑘𝜌, is shown alongside the true value. There is large uncertainty in the higher altitudes
where the atmosphere is very thin, and again at lower altitudes where the velocity of the vehicle is such that
aerodynamic forces aren’t as dominant in the dynamics.
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Fig. 5 Downrange and crossrange distances from the point of atmospheric interface for 1,000 Monte Carlo runs
with variable-time CPEG and atmospheric estimation. Depending on the initial conditions and the atmosphere,
not all the trajectories take the same route.

the QP solver. A trust region was used to keep the updated trajectory in an area of the state space where the linearized
dynamics model is still accurate, with |𝛿𝜎 | ≤ 20◦ and |𝛿Δ𝑡 | ≤ 0.1. The SQEKF was initialized at an altitude of 60 km,
and the estimated 𝑘𝜌 value was used in the dynamics model in CPEG. The measurement model in the SQEKF assumed
full state observations from the navigation system, with conservative measurement error standard deviations of 100
meters for the position, and 20 cm/s for the velocity.

All 1,000 Monte Carlo runs were successful in deploying the parachute within 1km of the target, with the trajectories
shown in Fig. 5 and Fig. 6. Depending on the specific atmosphere and initial perturbation, there were two families of
trajectories that the entry vehicle traversed. The bank-angle profiles for these trajectories are shown in Fig. 8. The
terminal errors for these runs are shown in Fig. 7, with each individual run shown as well as a 3𝜎 ellipse.

To demonstrate the effectiveness of the atmospheric adaptation, the same 1,000 Monte Carlo runs were executed
with and without adaption and the errors are shown in Fig. 10. The terminal errors for the runs with adaptation have
significantly lower errors than the same runs without adaptation. The statistics from these terminal errors are shown in
Table 2, showing a 37% decrease in the mean error, a 33% reduction in median error, and a 49% smaller maximum
error with the atmospheric adaptation turned on.

Table 2 Comparison of the parachute deployment error for variable time CPEG with and without the
atmospheric adaptation. With the adaptation on, the mean, median, and maximum errors are all reduced.

Mean Error Median Error Maximum Error
Adaptation Off 0.353 km 0.287 km 1.485 km
Adaptation On 0.223 km 0.193 km 0.758 km

VI. Conclusions
This work presents a combined estimator and controller architecture for atmospheric entry guidance in the Martian

atmosphere. Atmospheric adaptation is accomplished with a square-root extended Kalman Filter that estimates the ratio
of observed atmosphere to a nominal model computed offline, and uses this estimated ratio to modify the atmospheric
model used in the controller. The guidance portion was accomplished using a variant of the convex predictor-corrector
entry guidance algorithm (CPEG) that has been modified to include time as an optimization variable. This guidance
algorithm is based on the predictor-corrector framework in which a nonlinear simulation is performed from the current
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on the initial perturbation and atmosphere, there are two common paths that the entry vehicle takes to get to the
target, one maintaining a higher altitude than the other.
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Fig. 7 Terminal errors for parachute deployment for the 1,000 Monte Carlo runs as shown in downrange and
crossrange errors. Each terminal error is shown, as well as an ellipse denoting the 3𝜎 bounds.
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Fig. 10 Comparison of the terminal position errors from 1,000 Monte Carlo runs where atmospheric adaptation
was switched on and off. The spread of the terminal errors is significantly tighter and closer to the origin for the
cases with adaptation on.

initial condition and nominal control policy, and information from this prediction is used to correct the nominal control
policy. By solving for this correction using convex trajectory optimization, CPEG is able to explicitly reason about the
dynamics of the vehicle through the entirety of the trajectory and formulate a sophisticated control plan.

The estimator and controller were validated with a 1,000 Monte Carlo simulations in which atmospheric density and
wind profiles were sampled from Mars GRAM and the initial conditions of the entry vehicle were varied. With realistic
noise levels, the median miss distance in these 1,000 runs was 193 meters, compared with a median miss distance of
287 meters with the atmospheric adaptation turned off. In 94% of the control calls in these 1,000 runs, the convex
optimization problem was able to be solved in closed form with the solution to just one linear system. We believe that
this reflects a substantial accuracy improvement over prior entry guidance methods that do not adapt to unmodeled
atmospheric uncertainties, with only a modest increase in computational cost.
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