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Abstract—The computation of invariant manifolds in the Circu-
lar Restricted 3-Body Problem (CR3BP) is a key step in space
mission design as these manifolds provide low-energy trajec-
tories for various mission applications, including the design of
gravity-assist flybys and low-energy capture and escape around
bodies in the solar system. The conventional way of computing
invariant manifolds involves determining the stable and unstable
directions across the entire orbit through an eigendecomposition
of the monodromy matrix of the periodic orbit. These directions
are then propagated along the entire orbit with the state tran-
sition matrix. This paper presents a simpler method for com-
puting invariant manifolds without relying on the monodromy
matrix or its eigendecomposition, so that invariant manifolds
of unstable objects besides periodic orbits can be computed.
Our new algorithm is also efficiently parallelizable on modern
graphics processing units, leading to speed-ups of several orders
of magnitude compared to the conventional method executed on
a conventional CPU.
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1. INTRODUCTION
Invariant manifolds of unstable orbits are an important tool
in dynamical systems theory, and they are the key to under-
standing transport within the solar system. These manifolds
are tube-like structures that can be computed along a periodic
orbit to provide-low energy pathways that lead to the periodic
orbit, as well as escape from the periodic orbit with minimal
fuel [1]. One example of using manifolds for mission design
is the Genesis mission, which utilized stable manifolds to
construct a transfer trajectory and the unstable manifold to
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Figure 1: Stable an unstable manifolds around an L1 Lya-
punov orbit in the Earth-Moon system. The zero-velocity
curve is outlined in black.

design a free-return trajectory [2].

We present a new method for computing invariant manifolds
of unstable orbits. Instead of using the unstable eigenvectors
of the monodromy matrix, as in the standard method [3] [4],
we only rely on integrating the ordinary differential equa-
tions (ODE’s) of the circular restricted three-body problem
(CR3BP) forward in time to generate the unstable manifolds
and backward in time for the stable manifolds. The initial
conditions for the simulations are generated by a low-energy
maneuver in a user-defined direction, which guarantees that
all the manifolds along the entire orbit escape away from or
toward the orbit.

Another method for calculating invariant manifolds is the
parameterization method used by Haro [5] and Kumar [6]
to calculate both the quasiperiodic invariant tori and the
invariant manifolds (whiskers) of the tori. Kumar first solves
for the center, stable, and unstable directions (bundles), and
then uses a recursive parameterization method to obtain
the approximation of the invariant manifolds. Our method
simplifies the approach by eliminating the need to compute
the stable and unstable directions, since an arbitrary unit
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direction is sufficient to obtain an approximation of the
invariant manifold. This simplicity allows our algorithm to
be parallelized across multiple GPU cores, which provides a
significant speed up.

For concreteness, we describe this work in the context of
periodic orbits of the CR3BP. However, our method is ap-
plicable to general dynamical systems. Our mathematical
proof, described later, is limited to dynamical systems with
monodromy matrices with the same structure as that of the
CR3BP. Our main contribution is a fast and simple way of
computing invariant manifolds that is parallelizable, along
with a set of examples and comparisons to the conventional
method of computing invariant manifolds in the Earth-Moon
system. Our method achieves a computational speed-up
of three orders of magnitude compared to the conventional
method thanks to its parallelizability on modern GPU hard-
ware.

This paper proceeds as follows: We review background on
the CR3BP in Section 2. Next, we describe our algorithm
in Section 3 and provide the intuition behind its functionality.
Examples and computational benchmarks are detailed in Sec-
tion 4. Finally, Section 5 summarizes our results and suggests
directions for future work.

2. BACKGROUND
Trajectories in early space missions were dominated by the
Two-Body Problem (TBP) of the spacecraft around a central
body like the Earth, Moon, or Sun. The TBP is completely
integrable, and its orbits are conic sections described by (1)
where p is the semi-lattice rectum, a is the semi-major axis, e
is the eccentricity, and ν is the true anomaly. These orbits are
shown in Fig. 2.

Figure 2: Conic orbits around the Sun

r =
p

1 + ecosν

p = a(1− e2)
(1)

Transport in the Two-Body Problem is completely solved by
Lamberts Theorem:

Theorem 1 (Lambert’s Theorem) Given any two points A
and B in space around a central body and a time of travel,
T, there is at least one conic arc connecting A and B. (see
Easton, Anderson, and Lo [7] for an elementary solution).

Transport in the Circular Restricted Three-Body Problem

Adding a third body changes the problem of transport com-
pletely. There is no equivalent to Lambert’s Theorem for
the Three-Body Problem. To solve this problem, following
Poincaré’s lead, we use the CR3BP. In this model, the two
primary masses such as the Earth and the Moon are assumed

to move in circular orbits about their barycenter. The third
body, a spacecraft or a small body like an asteroid or comet, is
assumed to have infinitesimal mass. The hierarchical masses
of the primaries, m1 > m2, are normalized to unity:

m1 +m2 = 1,

µ = m2.
(2)

In (2), µ is the characteristic mass parameter for the CR3BP.
The distance between m1 and m2, and the rotation speed of
m1 and m2 about their barycenter are similarly normalized to
one so the non-dimensional period is 2π. To further reduce
the dynamics, we use a rotating frame about the barycenter so
that the two masses are fixed on the x-axis in Cartesian x, y, z
coordinates with m1 located at [−1+ µ, 0, 0] and m2 located
at [µ, 0, 0]. Fig. 3 gives a diagram of the rotating frame of the
Earth-Moon system [8].

Figure 3: The CR3BP in rotating coordinates with the five
equilibrium points (Lagrange points), L1–L5.

The equations of motion in six-dimensional phase space, R6,
consisting of position (x, y, z) and velocity (vx, vy, vz), are
given by:

ẋ = vx
ẏ = vy
ż = vz

v̇x =
∂U

∂x
+ 2vy

v̇y =
∂U

∂y
− 2vx

v̇z =
∂U

∂Z

(3)

where U is the augmented potential expressed in (4).
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U =
1

2
(x2 + y2) +

1− µ

r1
+

µ

r2

r1 = [(x+ µ)2 + y2 + z2]
1
2

r2 = [(x− 1 + µ)2 + y2 + z2]
1
2

m1 = 1− µ

m2 = µ

(4)

The CR3BP has an integral, the Jacobi Constant (C), consist-
ing of the augmented potential U and kinetic energy:

C = 2U − v2x + v2y + v2z (5)

The CR3BP has five equilibrium points, called the “Lagrange
points,” L1–L5. The stability of the Lagrange points depends
on the mass parameter µ. For most Solar System bodies, L1–
L3 are unstable, while L4 and L5 are locally stable. The
unstable equilibria are the most interesting and useful for
space missions. They are surrounded by low-energy orbits
in chaotic regimes where very small maneuvers using little
fuel can either stabilize them or cause large changes in a
spacecraft’s trajectory. Gravity-assist maneuvers in plane-
tary flybys, spacecraft moon tours, and low-energy captures
around moons and asteroids all depend critically on the
chaotic dynamics of unstable orbits.

Invariant Manifolds Replace Lambert’s Theorem for Trans-
port

Poincaré discovered that unstable periodic orbits are sur-
rounded by asymptotic trajectories that wind around them
forming tube-like structures called “invariant manifolds” [4].
These tubes are the transport mechanism in nonlinear dy-
namics. Given a periodic orbit, X(t), there are two types
of invariant manifolds: One set of trajectories, called the
“stable manifold” Ws(X), asymptotically winds onto the
periodic orbit. Another set of trajectories, called the “unstable
manifold” Wu(X), asymptotically escapes the periodic orbit.
Fig. 4 shows a Lyapunov orbit around L1 and L2 with its
stable and unstable manifolds forming tubes in space. These
tubes intersect one another across the solar system to form the
“Interplanetary Superhighway” [9].

Computing Invariant Manifolds

We can now describe the standard method for computing
invariant manifolds. Given a periodic orbit, X(t) with period
T, we linearize the dynamics F described in Eq. (3) and solve
the variational equation around X(t):

Ẋ = F (X),

δẊ = DF (X(t))δX = A(t)δX.
(6)

The term DF (X(t)) in Eq. (6) is the jacobian of the
dynamics in Eq. (3) with respect to the state. The expression
in (6) is a linear system with non-constant coefficients whose
solution is the 6× 6 fundamental matrix, Φ(t), also known as
the “state-transition matrix:”

Φ̇ = A(t)Φ(t),

Φ(0) = I6.
(7)

The state transition around an entire period T is known as the
monodromy matrix M :

M = Φ(T ). (8)

Figure 4: The stable manifold (green) and the unstable
manifold (red) of a Lyapunov orbit around L1 for the Jupiter-
Moon system [4]

For the CR3BP, M has the following eigenvalues:

λ1 =
1

λ2
> 1

λ3 = λ4 = 1

λ5 = λ∗
6, |λ5| = |λ6| = 1

(9)

where ∗ is the complex conjugate. The associated unit
eigenvectors are:

• ν1 = unstable eigenvector, grows uncontrollably
• ν2 = stable eigenvector, contracts towards the periodic
orbit
• ν3 = tangent to the periodic orbit
• ν4 = in the direction of the associated family of periodic
orbits
• ν5, ν6 = center manifold of bounded motion around X(t)

To compute the invariant manifold at a point X(t0) of the
periodic orbit, we use ν1 to compute the unstable manifold
and ν2 to calculate the stable manifold:

X(t0)± εν1

X(t0)± εν2

ε ≈ [1× 10−5, 1× 10−4]

(10)

The constant ε is a scaling factor applied to the eigenvector
when perturbing the periodic orbit state and this perturba-
tion is typically around 50 to 100 km away from X(t0) in
dimensional units. The ± gives the two components of the
trajectories of the invariant manifold at X(t0). To globalize
the trajectory on the manifold, we integrate (3) with the initial
conditions (10):

Wu(X(t0), τ) =

∫
F (X(t0) + εν1), t ∈ [0, τ ],

Ws(X(t0), τ) =

∫
F (X(t0) + εν2), t ∈ [−τ, 0].

(11)
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For clarity, we note that at time t = 0, Wu(X(t0), 0) =
Wu(X(t0), τ) = X0. Therefore, the time τ denotes the
time one is on Wu or Ws starting at X(t0) at time t = 0.
For the manifold trajectories at other points on the periodic
orbit, such as X(t1), one can use the state transition matrix,
Φ(t0, t1) to move the eigenvectors from t0 to t1 and then
apply (10) and (11).

3. A FAST PARALLEL ALGORITHM FOR
COMPUTING INVARIANT MANIFOLDS

The fact that invariant manifolds are asymptotic to the pe-
riodic orbits means that they are a theoretical concept that
cannot be computed exactly. One can only approximate them
numerically. Theoretically, the unstable manifold takes an
infinitely long time to escape from the periodic orbit, and
the stable manifold takes an infinitely long time to approach,
but can never reach the periodic orbit. However, nearby the
invariant manifolds are trajectories that closely shadow the
manifolds with very similar behavior. Using these shadow
trajectories, we can either escape the periodic orbit or ap-
proach it in finite time. This is the reason there needs to be
an offset ε in Eq. (10) (determined heuristically through trial
and error) in order to propagate and globalize the invariant
manifolds. For the purpose of mission design, these shadow
trajectories provide sufficient accuracy for further refinement
using high-fidelity models and trajectory-optimization tools.

The classical procedure for computing invariant manifolds
described in Section 2 [3] [10] is sufficiently complex to
prevent wide usage of this technique in practical mission
design and navigation, especially in operations when high
accuracy is required. Since the manifolds are defined only
for periodic orbits, in high-fidelity models, there are no exact
periodic orbits. Often, one is interested in an unstable trajec-
tory segment that is not associated with any periodic or quasi-
periodic orbit. A particular disappointment is the lack of ap-
plication for satellite-tour design, where the transfers between
resonant orbits around a single moon or multiple moons are
known to follow the invariant manifolds of periodic resonant
orbits. However, the moon tours require analysis of huge
numbers (millions) of resonant orbits. Computing invariant
manifolds in this situation is not practical, and the complexity
of the invariant manifold algorithm makes it cumbersome to
implement in parallel on modern GPU computing hardware.

Instead of using the eigenvectors of the monodromy matrix,
we simply add a unit velocity perturbation to the state vectors
along the orbit to produce initial conditions for integration.
Due to the local exponential blow-up along unstable direc-
tions of the monodromy matrix, the component of this unit
perturbation along the unstable eigenvector quickly dom-
inates the solution, and we do not need to compute the
monodromy matrix or its eigendecomposition directly. This
approach is also easily parallelized, allowing the algorithm to
be run across thousands of cores on a GPU, which enables
very fast computation of manifolds.

Algorithm Insight

The eigenvectors of M from (8) span the six-dimensional
phase space. Hence any vector is a linear combination of
these six eigenvectors.

Let Υ be an arbitrary random unit vector in the phase space.

Figure 5: Invariant manifolds of an L1 Lyapunov orbit in the
Earth-Moon system computed with the monodromy matrix
method

Figure 6: Invariant manifolds of an L1 Lyapunov orbit in the
Earth-Moon system computed with our parallel method

Represent Υ with the eigenvector basis:

Υ ∈ R6, |Υ| = 1,

Υ = Υ1ν1 +Υ2ν2 +Υ3ν3 +Υ4ν4 +Υ5ν5 +Υ6ν6.
(12)

Now, we globalize Wu(X(t0)) and Ws(X(t0)) using the
following initial condition:

X(t0) + εΥ =

X(t0) + ε(Υ1ν1 +Υ2ν2 +Υ3ν3 +Υ4ν4 +Υ5ν5 +Υ6ν6)

Wu(X(t0), τ) =

∫
F (X(t0) + εΥ), t ∈ [0, τ ]

Ws(X(t0), τ) =

∫
F (X(t0) + εΥ), t ∈ [−τ, 0]

(13)

Note that Wu is integrated forward in time, while Ws is
integrated backward in time. This is because the eigenvalues
λ1 = 1

λ2
> 1. So, when integrated forward, the unstable

component dominates; when integrated backward, the stable
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component dominates as the eigenvalues reverse roles. This
behavior is due to the fact that the integration of the Υ2ν2
component will shrink towards the periodic orbit, the compo-
nents Υ3ν3 + Υ4ν4 + Υ5ν5 + Υ6ν6 are bounded and slow
growing, while the Υ1ν1 component grows unbounded and
dominates the entire computation.

Algorithm 1 Compute Manifolds in Parallel

1: function COMPUTE MANIFOLDS(X)
2: ▷ Loop through discrete timesteps along the orbit
3: parfor t in range(T) do
4: ▷ Orbit state at time t
5: xt = X[t]
6: ▷ Perturbed orbit state
7: xp = xt ± ϵv
8: ▷ Simulate forward to time Ts
9: Wu = forwardsimulation(xp, Ts)
10: ▷ Simulate backward to time −Ts
11: Ws = backwardsimulation(xp,−Ts)
12: end parfor
13: end function

It is theoretically possible that one might pick a Υ⊥ν1, in
which case there is no expanding direction. However, this is
practically impossible because the set of vectors ⊥ν1 has zero
measure in our sample space.

Parallelization

Since our algorithm only consists of forward and backward
simulations from an arbitrary unit-velocity perturbation ap-
plied to discrete points along the orbit, we can easily paral-
lelize over all forward simulations on a GPU. Our simulations
provide stable and unstable manifolds along the entire orbit
in a fast way, which is very valuable for mission design with
minimum-energy trajectories. We use JAX [11] to speed up
and parallelize our code on a GPU. JAX uses XLA, which is
an accelerated linear algebra framework that generates high-
performance code to run on accelerators like GPUs. The JAX
functions used in this work are vmap for automatic vector-
ization and laxscan to conduct the forward simulation of the
dynamics in an efficient way [11]. Algorithm 1 summarizes
the new algorithm, where parfor indicates parallel execution
over all iterates. Note that we entirely avoid calculation of the
state transition matrix, the monodromy matrix, and its eigen-
decomposition.

4. NUMERICAL EXPERIMENTS
Table 1: Parameters for normalized coordinates

Parameter Value

µ 1.215× 10−2

L 3.850× 105

V 1.025
T 2.361× 106

We conduct all numerical experiments about the L1 and L2
Lagrange points in the Earth-Moon system. We first analyze
the invariant manifolds of a 2D Lyapunov orbit and a 3D
halo orbit using our new algorithm and compare the results to
the conventional approach for computing invariant manifolds
using the monodromy matrix. Then we parallelize the algo-
rithm on a GPU and conduct a speed test on the computation

of the unstable manifolds of a Lyaponov orbit around L1.
The forward and backward integration allows the stable and
unstable directions to grow or contract exponentially and
generate the corresponding invariant manifolds.

For this system, the mass parameter and all other unit normal-
ization constants are summarized in Table 1. We compute the
Lyapunov and halo orbits for this analysis using a differential-
corrector algorithm. Once we obtain these orbits, we sample
50 points along the orbit, add a perturbation to each discrete
state along the orbit, and simulate forward and backward. The
perturbation used in this analysis was v = [0, 0, 0, 1, 0, 0].
We first implement the algorithm in Julia [12], and use
RKF78 for the forward and backward simulations using the
DifferentialEquation.jl Julia package [13]. We then speed up
the algorithm by implementing it using the JAX library to par-
allelize each of the simulations. For the JAX implementation,
we use a fixed-step RK8 integrator.

Figure 7: Unstable manifolds of an L2 Halo orbit in the
Earth-Moon system computed with the monodromy matrix
method

Figure 8: Unstable manifolds of an L2 Halo orbit in the
Earth-Moon system computed with our method

2D Lyapunov Orbit Invariant Manifolds

The invariant manifolds for a 2D Lyapunov orbit around L1 in
the Earth-Moon system using the CR3BP are shown in Figs.
5 and 6. These manifolds were simulated for T = 1.583286
(nondimensionalized), and both methods overall show the
same manifold behavior. The Stable + denotes the stable
manifold generated when the perturbation was added to the
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Figure 9: Stable manifolds of an L2 Halo orbit in the Earth-
Moon system computed with the monodromy matrix method

Figure 10: Stable manifolds of an L2 Halo orbit in the Earth-
Moon system computed with our method

orbit state and Stable − is generated when the perturbation is
subtracted from the orbit state. Note that the +− sides of the
manifolds are reversed for Fig. 5 and 6, which may happen
as the perturbation is different for both methods, however
both still correspond to the stable manifold. Fig. 1 shows
the same manifolds integrated using our method for double
the time (2T). This shows the structure of the manifolds that
can be used for transfer trajectories or exit strategies during
missions.

3D Halo Orbit Invariant Manifolds

The manifolds for a halo orbit around the Earth-Moon L2
point using both methods are shown in Figs. 7- 10. Similar to
the Lyapunov case, both methods provide the same structure
for the stable and unstable manifolds. However, they are not
exact, which is expected because the random vector will take
time for the stable and unstable direction to expand/contract.
Both solutions are still dynamically feasible and approximate
the true manifold. The epsilon for this case was set to 1×10−5

and the simulation time was T = 5.971226 (nondimension-
alized). The black plot in Figs. 7- 10 represents the zero-
velocity curve for the specific energy of the orbit.

Timing Results

The algorithm was ported to JAX and parallelized on a server
with a 12th Gen Intel Core i9 12900K CPU and an NVIDIA
GeForce RTX 3090 GPU. For the timing test, we discretized
10,000 points along a Lyapunov orbit, perturbed these states
by an arbitrary vector, and simulated forward by time T
to obtain the unstable manifolds in both directions. The
arbitrary vector that was added and subtracted was set to
v = ε[0, 0, 0, 1, 0, 0] where ε = 1 × 10−4. Therefore, there
are 20,000 simulation rollouts in total. We time the addition
of the perturbation onto the discrete orbit states as well as
the forward simulation using the conventional monodromy
matrix method on a CPU in Julia, versus our method on a
GPU using JAX. The CPU using the monodromy method
took 39.050 s while our algorithm solved in 5.050 ms – a
speed-up of more than three orders of magnitude.

5. CONCLUSIONS
We present a massively parallel method for fast computation
of invariant manifolds. Our algorithm outperforms the current
method of finding manifolds by several orders of magnitude
in execution speed by taking advantage of the thousands of
cores available on modern GPU computing hardware. We
show that any arbitrary direction can be used to compute
these manifolds faster as we avoid the eigendecomposition
of the monodromy matrix, which is not trivial to parallelize
on a GPU. In these tests, we use the unit velocity direction,
however the algorithm generalizes to any velocity vector as
the perturbation. Our method also serves as an approximation
to the true manifold, which is asymptotic and cannot be
computed numerically. However, this approximation pro-
vides insight into low-energy trajectories that a spacecraft can
follow to enter a periodic orbit to conduct science. Future
work will include testing the algorithm with ephemeris data
and more complicated scenarios, such as the restricted planar
elliptic three body problem. We also plan to run tests on the
JPL GPU integrator to compare it with our implementation in
JAX.
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