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Abstract— This paper presents a novel, low-cost propriocep-
tive sensing solution for legged robots with point feet to achieve
accurate low-drift long-term position and velocity estimation.
In addition to conventional sensors, including one body Inertial
Measurement Unit (IMU) and joint encoders, we attach an
additional IMU to each calf link of the robot just above the
foot. An extended Kalman filter is used to fuse data from
all sensors to estimate the robot’s body and foot positions
in the world frame. Using the additional IMUs, the filter is
able to reliably determine foot contact modes and detect foot
slips without tactile or pressure-based foot contact sensors. This
sensing solution is validated in various hardware experiments,
which confirm that it can reduce position drift by nearly an
order of magnitude compared to conventional approaches with
only a very modest increase in hardware and computational
costs.

I. INTRODUCTION

Legged robots require precise estimation of physical states
such as body position and orientation (pose), as well as body
velocity, in order to balance, track velocity commands [1],
and plan paths [2] on challenging terrains. In many scenarios,
state estimation must be done solely with onboard sensors
because external sensors such as GPS and motion-capture
systems are not available.

A standard onboard sensing approach called Propriocep-
tive Odometry (PO) [3] uses an IMU in the robot’s body and
several leg sensors (joint encoders and foot contact sensors)
to estimate body pose (position and orientation) and velocity
in a Kalman filter (KF) [1], [4], [5]. However, on resource-
constrained legged robots equipped with cheap sensors, PO
is known to have large position drift [4], usually over 10%,
due to sensor noise and faulty foot-contact detection.

Recently published sensing solutions have added visual
sensors such as cameras and lidar [6]–[8] to improve position
estimation accuracy. With a camera or lidar onboard, position
estimation drift can be reduced to as low as 0.5% [7].
However, this comes at a significant additional cost in terms
of system complexity and computational power to process
camera images or lidar point clouds. For low-cost lightweight
legged robots with limited payload capacity, these visual
sensing solutions may not be viable.

Our goal is to develop a PO solution that can achieve low
position drift while requiring minimal additional hardware
and computational resources. To achieve this, we propose
Multi-IMU Proprioceptive Odometry (MIPO), a sensing so-
lution that uses multiple IMUs and leg-joint encoders to
significantly improve upon KF-based PO methods that only
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Fig. 1. Left: A Unitree Go1 robot equipped with foot IMUs. Right:
Position estimates while walking over a 160m loop trajectory: Standard
Proprioceptive Odometry (PO) has an average XY position drift of 18.4%,
while our Multi-IMU PO solution achieves 2.59% average drift, a significant
improvement achieved with minimal additional hardware and computational
cost.

use a single IMU. Compared to visual sensors such as
cameras and lidar, an IMU has much lower cost, energy
consumption, and physical size. Therefore, we are able to
add IMUs to the robot’s calf links near the feet with minimal
impact on the overall design and cost. To fuse data from
additional IMUs, We include world-frame foot positions and
velocities in the state of an Extended Kalman Filter (EKF)
and design a prediction model to update foot velocities
using foot IMU data. More importantly, we also leverage
the foot IMUs to detect contact and foot slip in a novel
measurement model, overcoming a fundamental error source
in conventional PO, where feet are assumed to have zero
velocity relative to the ground while in contact [1], [4], [9],
[10].

Our state-estimation approach is validated on a
quadrupedal robot in a variety of conditions, and we
make comparisons to several existing baseline methods. Our
specific contributions include:

• A novel low-cost multi-IMU sensing solution for pro-
prioceptive odometry on legged robots.

• An Extended Kalman Filter (EKF) with a prediction
model that uses foot IMU data to update foot velocities
and a measurement model that uses foot IMU data to
determine foot contact modes and slip.

• Ablation studies and comparison experiments on hard-
ware demonstrating significant reductions in position
drift.

The remainder of this paper is organized as follows:
Section II provides a review of related work. Section III
presents the basics of legged robot state estimation. Section
IV presents our main technical contributions. Section V
compares our solution with baseline methods across a variety
of experiments. An ablation study is also provided. Finally,



Section VI concludes the paper.

II. RELATED WORK

Legged robot state estimation has received considerable at-
tention in recent years [4], [8], [11]–[14]. With the increasing
commercial availability of low-cost quadrupedal robots [15],
[16], there is a strong need for cheap and reliable sensing
solutions for such robots with limited computation resources.

One of the earliest legged robot state estimation methods
using low-cost consumer-grade sensors was proposed in
[4], where an Extended Kalman Filter (EKF) was used to
combine measurements from a single IMU, joint encoders,
and foot contact sensors. Since all sensors are contained
within the body of the robot, this sensing solution is called
Proprioceptive Odometry (PO). A simplified version of PO
is used on the MIT Cheetah 3 robot [1], in which the state
estimator only estimates body velocity and foot positions, so
the filter has a linear form. To improve orientation estimation,
the invariant EKF was developed in [17]. Although many
variations on the EKF have been proposed, they all use the
same basic types and number of sensors.

With proprioceptive sensors, velocity estimation is typi-
cally good enough for stable closed-loop control, but position
drift is often as high as 10%-15% [4], [12], [17], [18]. A
major source of error in PO comes from the assumption that a
foot that is in contact with the ground has zero velocity [19].
However, in reality, the foot may be slipping [11], deforming
[10], or rolling on the ground. Nevertheless, PO is widely
used because not all legged robot control applications require
high-accuracy position estimation.

In addition to proprioceptive sensors, cameras, and li-
dars are effective for state estimation in the Simultaneous
Localization And Mapping (SLAM) research community
[20], [21]. Vision-based sensors have also been successfully
applied to legged robot state estimation: A loosely coupled
visual-inertial leg odometry (VILO) solution using a tactical-
grade IMU and high-quality cameras with an FPGA-based
sensor synchronization mechanism to achieve less than 1%
position estimation drift on the Boston Dynamics LS3 robot
was built in [22]. A solution based on the factor graph [23]
combines IMU, encoder, and camera measurements is pre-
sented in [13]. It is further improved by adding a lidar sensor
to achieve 0.2%-0.4% drift performance [7]. The camera
has also been shown to help eliminate some error sources
in PO to improve performance [8], [10], [24]. However,
because cameras and lidars generate high-bandwidth data,
these methods are computationally intensive by nature.

Using multiple IMUs instead of one to improve estimation
precision is common in many robotics research domains,
such as pedestrian navigation systems [25], augmented and
virtual-reality applications [26], and general visual-inertial
odometry [27], where IMUs were installed on the same
rigid body. Finally, an estimator is proposed in [28] using a
network of IMUs installed on different parts of a humanoid
robot for better joint-velocity sensing, but not for position
estimation.

world(w)
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Fig. 2. Left: Important frame definitions. Right: The installation location
of an IMU on one foot of a Unitree Go1 robot.

III. BACKGROUND

We now present the notation used throughout the paper
and review conventional PO for legged robot state estimation.
We use lowercase letters for scalars and frame abbreviations,
boldface lowercase letters for vectors, and upper case letters
for matrices and vector sets. The operation [a;b;c] vertically
concatenates elements a, b and c. The operator ⌊vvv⌋× converts
a vector vvv = [v1;v2;v3]∈R3 into the skew-symmetric “cross-
product matrix,”

⌊vvv⌋× =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 , (1)

such that vvv× xxx = ⌊vvv⌋×xxx.

A. Euler Angle Rotation

We parameterize the robot’s orientation using Tait–Bryan
angles [1]. Specifically, θθθ = [θr;θp;θy] represents an orien-
tation, where θy, θp, θr are commonly referred as yaw angle,
pitch angle, and roll angle respectively. A formulation with
quaternions [10] or other orientation parameters can also be
easily derived. We denote cos(θi) = ci and sin(θi) = si for
i ∈ {y, p,r}. We can construct a rotation matrix from these
angles:

R(θθθ) =

cpcy cycpcr − crcy crcy + crcycp
cpcy crcy + cpcrcy crcpcy − cycr
−cp cpcr cpcr

 , (2)

which transforms a vector represented in the robot body (b)
frame to the world inertial (w) frame [29]. When necessary
for clarity, we use superscripts and subscripts to explicitly
show the frame transformation property of rotation matrices
and the frame of a vector, so Rw

b · ppp means the rotation matrix
R transforms a vector ppp represented in coordinate frame b
into coordinate frame w. Important frames are shown in Fig.
2.

If the robot has an IMU installed at its center of mass,
we denote its output angular velocity measurement as ωωωb
and linear acceleration measurement as aaab. Given the grav-
itational acceleration vector gggw = [0;0;9.8m/s2], the robot
acceleration in the world frame aaaw can be calculated as

aaaw = R(θθθ)aaab −gggw. (3)

The derivative of the yaw-pitch-roll angles θ̇θθ is related to
the robot body angular velocity ωωωb through the following



relationship:

θ̇θθ =

θ̇r
θ̇p
θ̇y

=Ω(θθθ)ωωωb =

1 (spsr)/cp (crsp)/cp
0 cr −sr
0 sr/cp cr/cp

ωωωb. (4)

B. Forward Kinematics & Leg Odometry Velocity
In this section, we review forward kinematics and describe

how to infer the robot’s body velocity from joint-angle
information. For the jth leg of a legged robot, we define φφφ as
a vector containing all joint angles. The forward kinematics
function is denoted ppp f = g(φφφ) ∈ R3, whose output is the
foot position in the robot body frame. The derivative of this
equation leads to the Jacobian matrix J(φφφ) that maps φ̇φφ into
the foot’s linear velocity in the body frame:

vvv f = ṗpp f = J(φφφ)φ̇φφ . (5)

Let pppw
f denote the foot position in the world frame. It is a

function of the robot’s body position ppp and joint angles φφφ :

pppw
f = ppp+Rw

b ppp f = ppp+Rw
b g(φφφ). (6)

A fundamental assumption used in PO is the zero-velocity
assumption for a non-slipping foot in contact, which means
ṗppw

f = 0. As shown in [10], with this assumption we can derive
an expression for the body velocity in the world frame:

vvv =−Rw
b [J(φφφ)φ̇φφ + ⌊ωωω⌋×g(φφφ)]. (7)

This velocity is called the Leg Odometry (LO) velocity,
because its integration is the body displacement [30].

C. Extend Kalman Filtering
The Extended Kalman Filter (EKF) is widely used in robot

state estimation. The basic building blocks are a dynamics
or “process” model

xxxk+1 = f (xxxk)+nnnk (8)

and a measurement model

yyyk = h(xxxk)+wwwk, (9)

where nnnk and wwwk are zero-mean additive noise terms drawn
from Gaussian distributions with covariances Σn and Σw,
respectively. We also make use of the model Jacobians
Fk = ∂ f/∂xxxk and Hk = ∂h/∂xxxk [31].

Given an estimated state x̂xxk at time k and a sensor
measurement vector ȳyyk, the EKF first “predicts” the mean of
the state distribution at time k+ 1 using the process model
x̂xxk+1|k = f (x̂xxk). The filter then performs a “measurement
update”, where a measurement residual zzzk+1 = ȳyyk−h(x̂xxk+1|k)
and the Kalman gain [5] Kk+1 are calculated, so that

x̂xxk+1 = x̂xxk+1|k +Kk+1zzzk+1, (10)

is the state at time k + 1. The covariance of the state is
also updated accordingly. We refer the reader to standard
references on state estimation for more details [31].

D. Standard Single-IMU Proprioceptive Odometry
Let the robot’s state be xxx = [ppp;vvv;θθθ ;sss1, . . . ,sss j, . . . ,sssL],

where ppp ∈ R3 is the robot position in the world frame, θθθ is

the robot’s orientation Tait-Bryan angles, and vvv ∈ R3 is the
linear velocity of the robot’s body represented in the world
frame. For j ∈ {1, . . . ,L} where L is the total number of
legs of the robot, sss j is the foot position of leg j represented
in the world frame. For clarity, we will only discuss the
case when L = 1 in this section and drop the symbol j from
subsequent equations. The robot’s sensors generate a number
of measurements including IMU linear acceleration aaab, IMU
angular velocity ωωωb, joint angle φφφ , joint-angle velocity φ̇φφ ,
and c which is a binary contact flag with c = 1 indicating
foot contact.

Standard PO uses the EKF to estimate the state from a
single IMU and the LO velocity [1], [4]. The IMU is biased
[32] and the LO velocity may also have a bias due to leg
kinematic parameter changes [10]. We do not address these
biases in this work, but they can be easily added to the
EKF using well-known techniques to improve the overall
estimation accuracy [31].

The process model of standard PO is based on IMU
kinematics. A discrete-time dynamics update using Euler
integration is presented in [1],

x̂xxk+1 =


p̂ppk+1
v̂vvk+1

θ̂θθ k+1
ŝssk+1

=


p̂ppk +∆tv̂vvk

v̂vvk +∆t(R(θ̂θθ k)aaab −gggw)

θ̂θθ k +∆t(Ω(θ̂θθ k)ωωωb)
ŝssk

 , (11)

where ∆t is the time interval between k and k+1.

A common heuristic is used to reflect the fact that, during
foot swing, we cannot update the foot position in the process
model [4]: For the term corresponding to ŝss in nnnk, we set its
covariance σs to a large value if c = 0, and a small value
otherwise:

σs = cσc +(1− c)σn. (12)

σc and σn >> σc are all tunable hyper-parameters.

We formulate the EKF measurement model following [1].
From sensor measurements, a vector ȳyyk is obtained as

ȳyyk =

[
g(φφφ)

−J(φφφ)φ̇φφ + ⌊ωωωb⌋×g(φφφ)

]
(13)

The measurement function h(x̂xxk) is defined as

h(x̂xxk) =

[
R(θ̂θθ k)

T (ŝssk − p̂ppk)

R(θ̂θθ k)
T v̂vvk

]
(14)

The first term of the residual ȳyyk − h(x̂xxk) indicates that the
estimated body position and foot position must differ by a
distance equal to the leg forward kinematics position. The
second term ensures that the estimated robot body velocity
matches the LO velocity (7), which we refer to as a “zero-
velocity” observation model. Subsequently, we can utilize
residuals from all legs in the EKF as shown in equation (10).
However, measurement residuals are only applicable for non-
slipping standing feet. Therefore, the noise covariance Σw is
adjusted based on the contact flag c as in equation (12) [4].



IV. MULTI-IMU PROPRIOCEPTIVE ODOMETRY

The standard single-IMU PO method presented in Section
III-D has two fundamental limitations: First, foot positions
cannot be updated during the foot’s swing phase due to the
noise adjustment mechanism (12). If the robot has a fully
airborne phase, then leg sensors will have no contribution
to the state estimate. Second, the zero-velocity assumption
used when deriving (7) is seldom true on hardware. The LO
velocity always underestimates the true velocity if the foot
is rolling during contact, as shown in Fig. 3. Both of these
limitations can be addressed by adding additional IMUs to
the robot’s feet. We refer to this sensor-and-algorithm com-
bination as Multi-IMU Proprioceptive Odometry (MIPO).

We revise the estimator state to xxx = [ppp;vvv;θθθ ;sss j; ṡss j] where
we explicitly include foot velocity ṡss j in the state. Again, we
consider L= 1 and drop j ∈ {1 . . . ,L} for brevity. We assume
all sensors are synchronized and produce data at the same
frequency. In addition to sensor measurements introduced in
Section III-D, we also get aaa f and ωωω f , the foot acceleration
reading and the foot angular velocity reading from an IMU
installed on the foot in the foot frame.

A. EKF Process Model

We now use foot acceleration to predict foot velocity. The
process model is changed from (11) to

x̂xxk+1 =


p̂ppk+1
v̂vvk+1

θ̂θθ k+1
ŝssk+1
˙̂sssk+1

=


p̂ppk +∆tv̂vvk

v̂vvk +∆t(R(θ̂θθ k)aaab −gggw)

θ̂θθ k +∆t(Ω(θ̂θθ k)ωωωb)
ŝssk +∆t ˙̂sss

˙̂sssk +∆t(R(θ̂θθ k)Rb
f (φφφ)aaa f −gggw)

 . (15)

The rotation matrix Rb
f (φφφ) is a function of joint angles

φφφ , and can be obtained from forward kinematics [29]. It
maps the acceleration in the foot frame to the body frame.
Compared to (11), the noise covariance of this process model
does not depend on the contact flag because the dynamics are
continuous. The foot velocity noise covariance is constant as
long as IMUs do not saturate their readings, which can be
guaranteed by proper controller design and IMU hardware
selection.

B. The Pivoting Contact Model

For legged robots with spherical “point” feet, at any instant
in time, the robot body is pivoting around the contact point,
regardless of whether the contact foot is stationary or rolling.
Thus, the contact foot’s linear velocity should equal the cross
product of the foot angular velocity vector ωωω and a pivoting
vector ddd pointing from the contact point to the body center,
as illustrated in Fig. 3. ωωω and ddd are calculated as

ωωω(x̂xxk,φφφ ,ωωω f ) = R(θ̂θθ k)Rb
f (φφφ)ωωω f , (16)

ddd(x̂xxk,φφφ) =−d0 ·nnn/∥nnn∥, (17)

where d0 is the distance between the foot center and the
foot surface, and nnn= R(θ̂θθ k)g(φφφ) is the contact normal vector
expressed in the world frame. This “pivoting” model captures

to robot frame 
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Fig. 3. Left: Illustration of the pivoting model for a foot that has rolling
contact with the ground. The estimated foot velocity ṡssk depends on ωωω and
ddd, as defined in (16) and (17). Right: Comparison of ground-truth foot
velocity captured with a motion capture system to estimation using the
pivoting model (18). When the foot has non-zero rolling velocity during
contacts (shaded regions), the pivoting model agrees with the ground truth
velocity very well while the zero-velocity model treats foot velocity as zero.

rolling contact better than [10] and only relies on the foot
IMU.

C. EKF Measurement Model

Using the pivoting model, we revise the measurement
model as follows:

h(x̂xxk,φφφ ,ωωω f ) =

R(θ̂θθ k)
T (ŝssk − p̂ppk)

R(θ̂θθ k)
T (v̂vvk − ˙̂sssk)

˙̂sssk −ωωω ×ddd

 . (18)

The first term is the same as in (14). The second term comes
from (6) without assuming vvvw

f = 0. In contrast to (14), these
two terms do not have varying measurement noise since they
stay the same across foot contact switches.

We refer to the last term, which is based on the pivoting
model, as a pivoting measurement. Because this measure-
ment term is an implicit function of both states and sensor
measurements h(xxx,yyy) = 0 rather than an explicit function
yyy = h(xxx), its corresponding value in the measurement vector
ȳyyk is always zero [33]. Note that the pivoting constraint is
only valid when a foot is in contact with the ground.

D. Foot Contact and Slip Detection

We replace the covariance-scaling heuristic (12) with a
statistical test based on Mahalanobis distance [11]:√

zzzT S−1zzz < σ , (19)

where σ is a hyperparameter, zzz = ˙̂sss−ωωω × ddd, and S is its
corresponding covariance matrix calculated in the Kalman
filter. If (19) is satisfied, we treat the foot as being in
non-slipping contact and include the corresponding pivoting
measurement in the update (18).

Since the foot velocity is drastically different in the swing
and stance phases (see Fig. 3 unshaded regions), (19) can
distinguish foot phases without relying on a contact sensor.
Similar mechanisms for the zero-velocity model have been
used in [4] and [12], and we show, through an ablation study
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Fig. 4. The estimated XY position trajectory comparison of the standard PO
and MIPO. The total trajectory length is 10.5m. The standard PO estimation
drifts 11.39% on average, and its maximum RSE is 1.04m. While the result
of MIPO has 2.31% average drift and 0.25m maximum RSE.

Frequency Solve Time Median Drift
Standard PO 200Hz 1.81ms 11.05%

MIPO 200Hz 2.50ms 2.61%

TABLE I
PERFORMANCE SUMMARY

in Section V, that the statistical test is also important for the
pivoting model to achieve accurate position estimation.

V. EXPERIMENTS

We conducted a series of indoor and outdoor experiments
on hardware to compare our MIPO with the baseline method,
standard single-IMU PO [1], and Cerberus Visual-Inertial-
Leg Odometry (VILO) [8]. We focused on evaluating their
position estimation performance, especially XY position.
Common evaluation metrics used in the state-estimation liter-
ature include Root-Square-Error (RSE) and drift percentage.
RSE is defined as the Euclidean distance between the ground
truth and the estimated position at a given time instance.
Drift percentage is defined as the ratio of the RSE to the
total distance traveled. The data and code used to generate
results are available on Github1.

A. Sensor Hardware Design

The MIPO hardware does not significantly alter the form
factor of the Go1 robot. The Go1 robot’s built-in proprietary
MEMS IMU sensor and joint motor encoder data can be
obtained at 200Hz via Ethernet. The robot also has four
pressure contact sensors on the feet that can be thresholded
to obtain binary contact flags for the baseline method. Our
MIPO, however, does not use contact sensor data. Instead,
four MPU9250 IMUs are installed on each foot, right above
the foot, as shown in Fig. 2. Since it is difficult to directly
install an IMU at the exact foot center, we transform foot
IMU outputs to the foot center frame using the transforma-
tion measured in the CAD model. An Arduino Teensy board
communicates with the foot IMUs, acquiring their outputs
at 200Hz. An Intel NUC mini computer finally collects
sensor data from the Go1 robot and the Teensy board to run

1https://github.com/ShuoYangRobotics/
Multi-IMU-Proprioceptive-Odometry
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Fig. 5. Top: XY position trajectory estimation results of the standard
PO, MIPO, and three MIPO variants used in the ablation study. The total
trajectory length is 21.5m. Bottom: The drift percentages over time of all
methods. MIPO has the smallest (4.21%), followed by MIPO-F (7.75%),
MIPO-C (11.3%), MIPO-P (12.04%), and the standard PO (16.87%).

the MIPO algorithm. The computer also runs a nonlinear
predictive control locomotion controller [34].

B. Position Estimation Evaluation

We first compare the results of MIPO against standard PO
in an indoor environment. The robot operates in a lab space
equipped with a motion capture (MoCap) system which
provides the ground truth pose. The robot uses the trotting
gait or flying trotting gait (with a full airborne phase between
leg switching) to locomote in arbitrary directions with a
speed of 0.4-1.0 m/s on flat ground. Fig. 4 compares the es-
timated position trajectories. Table I compares their per-loop
solve times and average drifts across five different datasets.
MIPO has larger state dimensions so the computation time
is slightly longer, but the time is still within the budget (5
ms). Moreover, the drift percentage is significantly lower.

In outdoor environments where neither MoCap or reliable
GPS signals are available, we use the Cerberus [8] VILO
algorithm as ground truth to compare MIPO and standard
PO. As can be seen in Fig. 1, MIPO achieves a much smaller
position drift than standard PO after traveling 160m over
varrying terrains.

C. Ablation Study

In this section, we study the individual contribution of the
pivoting model and the statistical test introduced in Section
IV-C. We create three algorithm variants: 1) MIPO-P, where
the last term in (18) is ˙̂sssk instead of ˙̂sssk −ωωω × ddd. We vary
its measurement noise according to the contact flag but do
not perform the statistical test (19). In this way, MIPO-P is
essentially a standard PO that uses MIPO’s process model. 2)
MIPO-F, which adopts the pivoting model from MIPO, but
differs by replacing the statistical test with the measurement
noise adjustment mechanism based on the contact flag. And

https://github.com/ShuoYangRobotics/Multi-IMU-Proprioceptive-Odometry
https://github.com/ShuoYangRobotics/Multi-IMU-Proprioceptive-Odometry


3) MIPO-C, which uses MIPO’s process model, MIPO-
P’s measurement model, and the statistical test on the last
measurement term instead of varying measurement noise.
The results of standard PO, MIPO, and all three variants
are shown in Fig. 5.

MIPO-F has performance closer to MIPO than standard
PO, MIPO-P, and MIPO-C, showing that the largest per-
formance contributor is the pivoting constraint. This result
suggests that the zero-velocity model fundamentally limits
the capability of standard PO to achieve low-drift position
estimation, even if more accurate contact-flag generation
methods can be used to avoid contact-detection errors in
standard PO.

VI. CONCLUSIONS & FUTURE WORK

We have presented the Multi-IMU Proprioceptive Odom-
etry (MIPO), a legged robot state estimation solution with
IMUs in both the body and feet. Experiments have shown
that additional IMUs in feet can significantly reduce position
drift and improve overall estimation accuracy while keep-
ing computation and hardware costs low. Moreover, MIPO
provides an alternative method for detecting foot contact
modes and foot slip without using contact sensors. It is
a compelling replacement for conventional single-IMU PO.
The process and measurement models in MIPO can be easily
added to other EKF-based PO methods [1], [35]. MIPO’s
accuracy should further improve if IMU biases [4], kinematic
parameters [10], and other calibration errors are addressed.
Moreover, the contact flag generated by MIPO may also
benefit downstream control algorithms.
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