
Differentiable Collision Detection for a Set of Convex Primitives

Kevin Tracy1, Taylor A. Howell2, and Zachary Manchester1

Abstract— Collision detection between objects is critical for
simulation, control, and learning for robotic systems. How-
ever, existing collision detection routines are inherently non-
differentiable, limiting their applications in gradient-based opti-
mization tools. In this work, we propose DCOL: a fast and fully
differentiable collision-detection framework that reasons about
collisions between a set of composable and highly expressive
convex primitive shapes. This is achieved by formulating the
collision detection problem as a convex optimization problem
that solves for the minimum uniform scaling applied to each
primitive before they intersect. The optimization problem is
fully differentiable with respect to the configurations of each
primitive and is able to return a collision detection metric and
contact points on each object, agnostic of interpenetration. We
demonstrate the capabilities of DCOL on a range of robotics
problems from trajectory optimization and contact physics, and
have made an open-source implementation available.

I. INTRODUCTION

Computing collisions is of great interest to the computer
graphics, video game, and robotics communities. Popular
algorithms for collision detection include the Gilbert, John-
son, and Keerthi (GJK) algorithm [1], its updated variant
enhanced-GJK [2], and Minkowski Portal Refinement (MPR)
[3], [4]. For objects that have interpenetration, the Expanding
Polytope Algorithm (EPA) [5] is used to return a metric
that describes the depth of penetration between two ob-
jects. These algorithms are implemented in the widely used
Flexible Collision Library (FCL) [6], and are employed in
most physics engines including Bullet [7], Drake [8], Dart
[9], and MuJoCo [10]. While efficient and robust, all of
these algorithms are inherently non-differentiable due to their
logical control flow and pivoting.

This paper introduces DCOL, a differentiable collision-
detection framework that computes closest points, minimum
distance, and interpenetration depth between any pair of
six convex primitive shapes: polytopes, capsules, cylinders,
cones, ellipsoids, and padded polygons (Fig. 2). We do this
by formulating a convex optimization problem that solves
for the minimum uniform scaling that must be applied to the
primitives for an intersection to occur. When primitives are
not in contact, the minimum scaling for an intersection is
greater than one, and when there is interpenetration between
objects, the minimum scaling is less than one. The ability
to return an informative collision metric in the presence of
interpenetration is a key distinction between DCOL and GJK

1Kevin Tracy and Zachary Manchester are with The Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
{ktracy,zacm}@cmu.edu

2Taylor Howell is with the Department of Mechanical
Engineering, Stanford University, Stanford, CA 94305, USA
thowell@stanford.edu

Fig. 1. Collision detection between a cone and a polytope. DCOL works
by solving an optimization problem for the minimum scaling of each object
that produces an intersection which, in this example, is greater than one,
meaning there is no collision. The scaled objects are translucent and the
intersection point between these scaled objects is shown in red.

variants. In addition to the scaling parameter detecting a
collision, the contact points on each object can be calculated
from this solution as well.

The optimization problems produced by our formulation
are bounded, feasible, and well-defined for all configurations
of the primitives. Differentiable convex optimization allows
the sensitivities of the solution to be calculated with respect
to problem parameters with minimal added computation.
This allows informative and smooth derivatives of the mini-
mum scaling as well as the contact points with respect to the
configurations of the primitives to be computed efficiently.

The ability to differentiate through our collision detection
algorithm enables the inclusion of accurate collision infor-
mation into gradient-based robotic simulation, control, and
learning frameworks. We demonstrate this on several relevant
robotics problems from trajectory optimization and contact
physics.

Our specific contributions in this paper are the following:
• An optimization-based collision detection formulation

between convex primitives that returns an informative
collision metric even in the case of interpenetration

• Efficient differentiation of this optimization problem
with respect to the configurations of each primitive

• A fast and efficient open-source implementation of these
algorithms built on a custom primal-dual interior-point
solver

The paper proceeds by providing background on standard
convex conic optimization and differentiation of conic op-

ar
X

iv
:2

20
7.

00
66

9v
2 

 [
cs

.R
O

] 
 1

4 
Se

p 
20

22



timization problems in Section II, a derivation of DCOL in
Section III with the corresponding constraints for each of the
six convex primitives shown in Fig. 2, example use cases in
trajectory optimization and contact physics in Section IV,
and our conclusions in Section V.

II. BACKGROUND

The differentiable collision detection algorithm, DCOL,
proposed in this paper is built on differentiable convex
optimization. In this section, convex optimization with the
relevant conic constraints is detailed, as well as a method
for efficiently computing derivatives of these optimization
problems with respect to problem parameters.

A. Conic Optimization

DCOL formulates collision detection problems as a convex
optimization problem with conic constraints [11]. In standard
form, these optimization problems have linear objectives and
constraints of the following form:

minimize
x

cTx

subject to h−Gx ∈ K,
(1)

where x ∈ Rn, c ∈ Rn, G ∈ Rm×n, h ∈ Rm, and
K = K1 × · · · × KN is a Cartesian product of N proper
convex cones. The optimality conditions for problem 1 are
as follows:

c+GT z = 0, (2)
h−Gx ∈ K, (3)

z ∈ K∗, (4)
(h−Gx) ◦ z = 0, (5)

where a dual variable z ∈ Rm is introduced, K∗ is the dual
cone, and ◦ is a cone product specific to each cone [12].

The cones required for DCOL include the nonnegative
orthant, denoted as Rm

+ , and the second-order cone, denoted
as Qm. The nonnegative orthant contains any vector s ∈ Rm

+

where s ≥ 0, and the a second-order cone contains any vector
s ∈ Qm such that ‖s2:m‖2 ≤ s1.

We develop a custom primal-dual interior-point solver for
DCOL, with support for both of the relevant cones, based on
the conelp solver from [12], with features taken from [13]–
[16]. The memory for this custom solver is entirely stack-
allocated and is optimized for the small problems that DCOL
creates, dramatically outperforming off-the-shelf primal-dual
interior-point conic solvers like ECOS [13] and Mosek [17].

B. Differentiating Through a Cone Program

Recent advances in differentiable convex optimization
have enabled efficient differentiation through problems of
the form (1) [18]–[20]. Solutions to (1) can be differentiated
with respect to any parameters used in c, G, and h.

At the core of differentiable convex optimization is the
implicit function theorem. An implicit function g : Ra ×
Rb → Ra is defined as:

g(z∗, θ) = 0, (6)

TABLE I
AVERAGE DCOL COMPUTATION TIMES

polyt. caps. cyl. cone ellips. polyg.
evaluate 5.9 µs 8.5 µs 8.4 µs 5.0 µs 6.8 µs 9.4 µs

differentiate 1.4 µs 1.4 µs 1.6 µs 1.3 µs 1.3 µs 1.7 µs

for an equilibrium point z∗ ∈ Ra, and problem parameters
θ ∈ Rb. Approximating (6) with a first-order Taylor series
results in:

∂g

∂z
δz +

∂g

∂θ
δθ = 0, (7)

which can be re-arranged to solve for the sensitivities of the
solution with respect to the problem parameters:

∂z

∂θ
= −

(
∂g

∂z

)−1
∂g

∂θ
. (8)

By treating the optimality conditions in equations (2) and
(5) as an implicit function at a primal-dual solution, the
sensitivities of the solution with respect to the problem data
can be computed. When the original optimization problem
is solved using a primal-dual interior-point method as de-
scribed in [12], these derivatives can be computed after the
solve without any additional matrix factorizations [20]. This
enables fast differentiation of conic programs that are fit for
use in our differentiable collision detection algorithm.

III. THE DCOL ALGORITHM

This section details how DCOL computes collision in-
formation between two convex primitives. The core part of
this framework is an optimization problem that solves for a
minimum uniform scaling α ∈ R applied to both objects
that result in an intersection. In the case where there is
no collision between the two objects, the minimum scaling
is greater than one, and when there is interpenetration, the
minimum scaling is less than one. Because of this, we find
the minimum scaling α is a better collision metric than
the closest distance between the primitives, allowing for the
straightforward description of collision constraints that are
agnostic of interpenetration. All steps in the creation and
solving of this optimization problem are fully differentiable,
and average timing results for computing both solutions and
derivatives are provided in Table I as an average over each
primitive.

A. Optimization Problem

Scaled convex primitives are described as a set S(α),
which is a specific instance of the primitive scaled by some
α. A point x ∈ R3 is said to be in the set x ∈ S(α) if x
is within the scaled primitive. This notation allows for the
following formulation of the optimization problem:

minimize
x, α

α

subject to x ∈ S1(α),
x ∈ S2(α),
α ≥ 0,

(9)



(a) (b) (c)

(d) (e) (f)
Fig. 2. Geometric descriptions of the six primitive shapes that are compatible with this differentiable collision detection algorithm. These shapes include
a polytope (a), capsule (b), cylinder (c), cone (d), ellipsoid (e), and padded polygon (f). Collision information including the collision status as well as the
contact points can be computed between any of two of these primitives using DCOL.

where the minimum scaling α is computed such that x is
in the interior of both of the scaled primitives, making x
an intersection point. This optimization problem is convex,
bounded, and feasible for all of the primitives described
in this paper. The boundedness comes from the constraint
α ≥ 0, and the guarantee of feasibility comes from the
fact that each object is uniformly scaled, so that in the
limit α → ∞ each shape will encompass the entirety of
R3, guaranteeing an intersection between objects. Another
benefit to this problem formulation is that the only time
the minimum scaling α = 0 is when the origins of the
two objects are coincident, in which the problem and its
derivatives are still well defined.

B. Primitives

This section details the constraints that define set mem-
bership for each of the six scaled primitives. Each object is
defined with an attached body reference frame B with an
origin r ∈ R3 expressed in a world frame W. The uniform
scaling of these objects is always centered about this position
r, and when the scaling parameter α is 0, the object is simply
a point centered at r. The orientation of an object is defined
by a rotation matrix WQB ∈ R3×3 relating the world frame
to the object-fixed body frame, denoted as Q for shorthand.
For each primitive, the constraints are also explicitly written
in standard conic form for direct inclusion in our custom
conic solver in the form of (1), where h−Gx ∈ K.

1) Polytope: A polytope is a convex shape in R3 defined
by a set of halfspace constraints, an example of which is
shown in Fig. 2a. This polytope is described as the set of
points w ∈ R3 such that Aw ≤ b for w expressed in B,
where A ∈ Rm×3 and b ∈ Rm represent the m halfspace
constraints comprising the polytope. This polytope can be
scaled by α, resulting in the following constraint for x to be
inside the polytope:

AQT (x− r) ≤ αb. (10)

The scaling parameter α scales the vector b, resulting in
uniform scaling of all halfspace constraints and subsequent
uniform scaling of the polytope. This constraint in standard
form is the following:

[
AQT r

]
−
[
AQT −b

] [x
α

]
∈ R+. (11)

2) Capsule: A capsule can be defined by the set of points
within some radius R of a line segment, as shown in Fig. 2b.
This internal line segment is along the x axis of the attached
reference frame B, and the end points of this line segment
are some distance L apart. The scaled constraints for this
primitive are that the point x must be within a scaled radius
of the line segment, where the distance of the endpoints of



the line segment from r is also scaled:

‖x− (r + γb̂x)‖2 ≤ αR, (12)

−αL
2
≤ γ ≤ αL

2
, (13)

where b̂x = Q[1, 0, 0]T , and γ ∈ R is a slack variable. These
constraints contain a linear inequality and one second-order
cone constraint, shown here in standard form:[

0
0

]
−
[
01×3 −L/2 1
01×3 −L/2 −1

]xα
γ

 ∈ R2
+, (14)

[
0
−r

]
−
[
01×3 −R 0

−I3 03×1 b̂x

]xα
γ

 ∈ Q4. (15)

3) Cylinder: The description of a cylinder is shown in
Fig. 2c, with an orientation, a radius R, and a length L.
The constraints for this primitive are the same as for the
capsule in equations (12) and (13), with the introduction of
two new scaled halfspace constraints that give the cylinder
its flat ends:

[x− (r − αL
2
b̂x)]

T b̂x ≥ 0, (16)

[x− (r + α
L

2
b̂x)]

T b̂x ≤ 0. (17)

These constraints in standard form include those shown in
equations (14) and (15) with the following addition:[

−b̂Tx r
b̂Tx r

]
−
[
−b̂Tx −L/2 0

b̂Tx −L/2 0

]xα
γ

 ∈ R2
+. (18)

4) Cone: As shown in Fig. 2d, a cone can be described
with a height H , and a half angle β. The origin of the object-
fixed frame r is one-quarter of the way from the flat face to
the point of the cone, and α scales the distance of these two
ends from the center point r:

‖x̃2:3‖2 ≤ tan(β)x̃1, (19)

(x− r − αH
4
b̂x)

T b̂x ≤ 0, (20)

where x̃ = QT (x−r+α 3H
4 b̂x). These constraints in standard

form are: [
b̂Tx r
]
−
[
b̂Tx −H/4

] [x
α

]
∈ Rm

+ , (21)

[
−EQT r

]
−
[
−EQT v

] [x
α

]
∈ Q3, (22)

where E = diag(tanβ, 1, 1) and v = (− 3H
4 tanβ, 0, 0).

5) Ellipsoid: An ellipsoid, shown in Fig. 2e, can be
described by a quadratic inequality xTPx ≤ 1, where
P ∈ Sn

++ is strictly positive definite and has an upper-
triangular Cholesky factor U ∈ Rn×n [11]. From here, a
scaled ellipsoid with arbitrary position and orientation can
be expressed in the following way:

‖UQT (x− r)‖2 ≤ α, (23)

where a sphere of radius R is just a special case of an
ellipsoid with P = I/R2. These constraints can be written
in standard form as:[

0
−UQT r

]
−
[

01×3 −1
−UQT 03×1

] [
x
α

]
∈ Q4. (24)

6) Padded Polygon: A “padded” polygon is defined as
the set of points within some radius R of a two-dimensional
polygon. Shown in Fig. 2f, the first two basis vectors of B
span the polygon, and the polygon itself is defined with a
slack variable y ∈ R2, and Cy ≤ αd, where C ∈ Rm×2,
and d ∈ Rm, describe the m halfspace constraints for the
polygon. This polygon is scaled in the same fashion as the
polytope, and results in the following constraints:

‖x− (r + Q̃y)‖2 ≤ αR, (25)
Cy ≤ αd, (26)

where Q̃ ∈ R3×2 is the first two columns of Q. These con-
straints can be represented in standard form as the following:

[
0m
]
−
[
0m×3 −d C

] xα
y

 ∈ Rm
+ , (27)

[
0
−r

]
−
[
01×3 −R 01×2

−I3 03×1 Q̃

] [
x
α

]
∈ Q4. (28)

C. Contact Points and Minimum Distance

While the computation of contact points and minimum
distance between primitives is not needed for any of the
examples in Section IV, they are easy to compute with DCOL
if desired. The intersection point on the two scaled primitives
is referred to as x∗, but unless α∗ = 1, this point does not
exist on the surface of the primitives. The corresponding
contact point for primitive i, pi ∈ R3, is calculated using
the optimal x∗ and α∗ from (9) as

pi = ri +
x∗ − ri
α∗ , (29)

where the intersection point between the scaled primitives is
simply scaled back to each unscaled primitive. The distance
between these points can also be calculated as follows:

‖d‖2 = ‖p1 − p2‖2 = ‖r1 − r2 +
r2 − r1
α
‖2. (30)

Both of these operations are fully differentiable given the
derivatives from DCOL, allowing for the calculation of
the sensitivities of the contact points with respect to the
configurations of the primitives.

IV. EXAMPLES

In this section, we demonstrate the utility of differentiable
collision detection in trajectory optimization problems where
contact is to be avoided, and in physics simulation with con-
tact where exact and differentiable collision information is
required. In both of these applications, a collision constraint
α ≥ 1 is used to enforce no interpenetration between each
pair of primitives, where α is the minimum scaling from
DCOL.



Fig. 3. Trajectory optimization for a 6-DOF quadrotor as it moves from left to right through a cluttered hallway. The collision constraints were represented
with DCOL, and the trajectory optimizer was initialized with a static hover at the initial condition.

A. Trajectory Optimization

Trajectory optimization is a powerful tool in motion plan-
ning and control, where a numerical optimization problem
is formulated to solve for a constrained trajectory that
minimizes a cost function. A generic trajectory optimization
problem with collision avoidance constraints from DCOL is
as follows:

minimize
x1:N ,u1:N−1

`N (xN ) +
∑N−1

k=1 `k(xk, uk)

subject to xk+1 = fk(xk, uk),
hk(xk, uk) ≤ 0,
gk(xk, uk) = 0,
αk(xk) ≥ 1,

(31)

where k is the time step, xk and uk are the state and control
inputs, `k and `N are the stage and terminal costs, f(xk, uk)
is the discrete dynamics function, hk(xk, uk) and gk(xk, uk)
are inequality and equality constraints, and αk(xk) are the
collision avoidance constraints from DCOL. Problems of this
form can be solved with general purpose nonlinear program
solvers like SNOPT [21], and Ipopt [22], or more specialized
solvers like ALTRO [23], [24].

A key requirement for any gradient-based solver used to
solve (31) is the ability to differentiate all of the cost and
constraint functions with respect to the state and control
inputs. This requirement has made collision-avoidance con-
straints difficult to incorporate into trajectory optimization
frameworks because traditional collision detection methods
are non-differentiable. In this section, DCOL is used to
formulate collision-avoidance constraints in trajectory opti-
mization problems to solve for collision-free trajectories.

1) “Piano Mover” Problem: The first problem we will
look at is a variant of the “Piano Mover” problem, where a
piano must maneuver around a 90-degree turn in a hallway
[25], [26]. The walls are 1 meter apart, and the “piano” (a
line segment) is 2.6 meters long, making the path around
the corner nontrivial. This problem is solved with trajectory
optimization and collision constraints, where the piano is
parameterized as a cylindrical rigid body in two dimensions,
with a position and orientation, and the hallway is modeled
with polytopes. The solution to this problem is shown in Fig.
4, where the piano successfully maneuvers around the tight
corner and reaches the goal state without traveling through

Fig. 4. The “Piano Movers” problem, where a “piano” (red rectangle)
has to make a turn down a hallway, is solved with trajectory optimization.
The piano and the walls are modeled as rectangular prisms. DCOL was
used to represent all of the collision avoidance constraints that ensure the
piano cannot travel through the wall, and the trajectory optimizer was able
to converge on a feasible trajectory to deliver the piano to the goal state.

any of the walls. The trajectory optimizer was initialized with
the piano in a static pose at the initial condition. [25] [26]

2) Quadrotor: Motion planning for quadrotors has re-
ceived significant attention in recent years [27]–[29], with
collision avoidance featured in many of these works [30]–
[32]. With DCOL, we are able to directly and exactly
incorporate collision avoidance constraints into a quadrotor
motion planner to solve for trajectories through cluttered
environments. In this example, we use trajectory optimization
for a classic 6-DOF quadrotor model from [27], [33] to solve
for a trajectory that traverses a cluttered hallway with 12
objects in it, shown in Fig. 3. The solver was initialized with
the quadrotor hovering at the initial condition, and a spherical
outer approximation of the quadrotor geometry was used
to compute collisions. Despite this naive guess, the solver
was able to quickly converge on a collision-free trajectory
through the obstacles.

3) Cone Through an Opening: This example demon-
strates how trajectory optimization with DCOL can route
a cone through a square hole in a wall, as shown in Fig.
5. The dynamics of the cone are modeled as a rigid body
with full translational and rotational control, and the wall is
comprised of four rectangular prisms, making a rectangular
opening in the wall. The trajectory optimizer converged on
a solution where the cone successfully passes through the
opening in the wall, requiring that the cone slewed its ori-
entation and “squeezed through” the opening. This example
demonstrates the importance of the differentiability of the



(a)

(b)
Fig. 5. Trajectory optimization for a cone (orange) with translation and
attitude control as it travels through a square opening in a wall. Top-down
and side views are shown in (a) and (b), respectively. The cone is forced
to slew to an attitude that allows for the passing of the cone through the
opening before returning to the initial attitude. The trajectory optimizer was
simply initialized with the static initial condition.

collision avoidance constraints, as the optimizer was forced
to leverage both translational and rotational manipulation of
the cone in order to successfully pass through the opening.
As with the previous two examples, there was no expert
initial guess provided to the trajectory optimizer, just a static
initial condition.

B. Contact Physics

Another application of differentiable collision detection
in robotics is contact physics for simulation. Rigid-body
mechanics with inelastic collisions can be simulated using
complementarity-based time-stepping schemes [34], where
stationary points of a discretized action integral are solved
for subject to contact constraints [35]. Normally these con-
straints are limited to traditionally differentiable ones like
those between fixed contact points and a floor. The dif-
ferentiability of DCOL enables these same methods to be
extended for simulating contact between convex primitives,
as shown in Fig. (6) where twelve primitives collide. In terms
of computation times, using DCOL for contact physics is rea-
sonable given each constraint evaluation and differentiation
are usually less than 10 µs as shown in Table I.

V. CONCLUSION

We have presented DCOL, a fast differentiable collision
detection algorithm capable of computing useful collision
information and derivatives for pairs of any of six convex
primitives. By formulating the collision-detection problem

Fig. 6. Contact physics with differentiable collision constraints embedded
in a complementarity-based time-stepping scheme, simulated at 100 Hz.
Twelve convex objects are started at random positions with velocities
pointing towards the origin at t = 0. The objects impact each other at
t = 2 and spread out again by t = 3.5. Despite the complexity of the
simulation, the collision constraints can be enforced to machine precision
and the integration is stable.

as an optimization problem that solves for the minimum
uniform scaling that must be applied to each primitive
before an intersection occurs, a surrogate proximity value
is returned that is informative for primitives with or without
a collision. Using differentiable convex optimization and a
primal-dual interior-point conic solver, smooth derivatives
of this optimization problem are returned after convergence
with very little additional computation. The utility of DCOL
is demonstrated in a wide variety of robotics applications,
including motion planning and contact physics, where colli-
sion derivatives are required. Future work includes methods
for convex decompositions of complex shapes as well as the
incorporation of DCOL into existing physics engines. Our
open-source Julia implementation of DCOL is available at
https://github.com/kevin-tracy/DCOL.jl.

REFERENCES

[1] E. Gilbert, D. Johnson, and S. Keerthi, “A fast pro-
cedure for computing the distance between complex
objects in three-dimensional space,” IEEE Journal on
Robotics and Automation, vol. 4, no. 2, pp. 193–203,
Apr. 1988.

[2] S. Cameron, “Enhancing GJK: Computing minimum
and penetration distances between convex polyhe-
dra,” in Proceedings of International Conference on
Robotics and Automation, vol. 4, Albuquerque, NM,
USA: IEEE, 1997, pp. 3112–3117.

[3] G. Snethen, “XenoCollide: Complex Collision Made
Simple,” undefined, 2008.

[4] J. Newth, “Minkowski Portal Refinement and Spec-
ulative Contacts in Box2D,” Master of Science, San
Jose State University, San Jose, CA, USA, Apr. 2013.

[5] G. Van Den Bergen, “Proximity Queries and Penetra-
tion Depth Computation on 3D GAme Objects,” 2001.

[6] J. Pan, S. Chitta, and D. Manocha, “FCL: A general
purpose library for collision and proximity queries,”
in 2012 IEEE International Conference on Robotics
and Automation, St Paul, MN, USA: IEEE, May 2012,
pp. 3859–3866.

[7] E. Coumans, “Bullet Physics Simulation,” in SIG-
GRAPH, Los Angeles: ACM, 2015.

https://github.com/kevin-tracy/DCOL.jl


[8] R. Tedrake and The Drake Development Team,
“Drake: Model-based design and verification for
robotics,” 2019.

[9] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y.
Ye, S. S. Srinivasa, M. Stilman, and C. Karen Liu,
“DART: Dynamic Animation and Robotics Toolkit,”
The Journal of Open Source Software, vol. 3, no. 22,
p. 500, Feb. 2018.

[10] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A
physics engine for model-based control,” in 2012
IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012, pp. 5026–5033.

[11] S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2004.

[12] L. Vandenberghe, “The CVXOPT linear and quadratic
cone program solvers,” p. 30,

[13] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP
solver for embedded systems,” in 2013 European
Control Conference (ECC), Zurich: IEEE, Jul. 2013,
pp. 3071–3076.

[14] Y. E. Nesterov and M. J. Todd, “Self-Scaled Barriers
and Interior-Point Methods for Convex Programming,”
Mathematics of Operations Research, vol. 22, no. 1,
pp. 1–42, Feb. 1997.

[15] E. Andersen, C. Roos, and T. Terlaky, “On imple-
menting a primal-dual interior-point method for conic
quadratic optimization,” Mathematical Programming,
vol. 95, no. 2, pp. 249–277, Feb. 2003.

[16] Y. E. Nesterov and M. J. Todd, “Primal-Dual Interior-
Point Methods for Self-Scaled Cones,” SIAM Journal
on Optimization, vol. 8, no. 2, pp. 324–364, May 1998.

[17] Mosek ApS, “The MOSEK optimization software,”
Tech. Rep., 2014.

[18] A. Agrawal, S. Barratt, S. Boyd, W. M. Moursi,
and E. Busseti, “Differentiating Through a Conic
Program,” Journal of Applied and Numerical Opti-
mization, vol. 1, no. 2, pp. 107–115, 2019.

[19] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Di-
amond, and Z. Kolter, “Differentiable Convex Op-
timization Layers,” Advances in Neural Information
Processing Systems, pp. 9558–9570, 2019.

[20] B. Amos and J. Z. Kolter, “OptNet: Differen-
tiable Optimization as a Layer in Neural Networks,”
arXiv:1703.00443 [cs, math, stat], Oct. 2019.

[21] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT:
An SQP Algorithm for Large-Scale Constrained Op-
timization,” SIAM Review, vol. 47, no. 1, pp. 99–131,
Jan. 2005.

[22] A. Wächter and L. T. Biegler, “On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming,” Mathematical
Programming, vol. 106, no. 1, pp. 25–57, Mar. 2006.

[23] T. A. Howell, B. E. Jackson, and Z. Manchester,
“ALTRO: A Fast Solver for Constrained Trajectory
Optimization,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Macau,
China, Nov. 2019.

[24] B. E. Jackson, T. Punnoose, D. Neamati, K. Tracy,
and R. Jitosho, “ALTRO-C: A Fast Solver for Conic
Model-Predictive Control,” in International Confer-
ence on Robotics and Automation (ICRA), Xi’an,
China, 2021, p. 8.

[25] D. Wilson, J. H. Davenport, M. England, and R.
Bradford, “A ”Piano Movers” Problem Reformulated,”
in 2013 15th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing,
Sep. 2013, pp. 53–60.

[26] J. T. Schwartz and M. Sharir, “On the “piano movers”’
problem I. The case of a two-dimensional rigid
polygonal body moving amidst polygonal barriers,”
Communications on Pure and Applied Mathematics,
vol. 36, no. 3, pp. 345–398, May 1983.

[27] D. Mellinger and V. Kumar, “Minimum snap trajectory
generation and control for quadrotors,” in 2011 IEEE
International Conference on Robotics and Automation
(ICRA), May 2011, pp. 2520–2525.

[28] D. Mellinger, N. Michael, and V. Kumar, “Trajectory
Generation and Control for Precise Aggressive Ma-
neuvers with Quadrotors,” p. 13,

[29] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and
D. Scaramuzza, “A Comparative Study of Non-
linear MPC and Differential-Flatness-Based Control
for Quadrotor Agile Flight,” IEEE Transactions on
Robotics, pp. 1–17, 2022.

[30] D. Falanga, K. Kleber, and D. Scaramuzza, “Dynamic
obstacle avoidance for quadrotors with event cam-
eras,” Science Robotics, vol. 5, no. 40, eaaz9712, Mar.
2020.

[31] R. Penicka, Y. Song, E. Kaufmann, and D. Scara-
muzza, “Learning Minimum-Time Flight in Cluttered
Environments,” IEEE Robotics and Automation Let-
ters, vol. 7, no. 3, pp. 7209–7216, Jul. 2022.

[32] H. Shraim, A. Awada, and R. Youness, “A survey
on quadrotors: Configurations, modeling and identi-
fication, control, collision avoidance, fault diagnosis
and tolerant control,” IEEE Aerospace and Electronic
Systems Magazine, vol. 33, no. 7, pp. 14–33, Jul. 2018.

[33] B. Jackson, T. Howell, K. Shah, M. Schwager, and
Z. Manchester, “Scalable Cooperative Transport of
Cable-Suspended Loads with UAVs using Distributed
Trajectory Optimization,” in International Conference
on Robotics and Automation, Paris, France, Jun. 2020,
p. 8.

[34] T. A. Howell, S. Le Cleac’, J. Z. Kolter, M. Schwager,
and Z. Manchester, “Dojo: A Differentiable Simulator
for Robotics,” 2022.

[35] J. E. Marsden and M. West, “Discrete Mechanics
and Variational Integrators,” Acta Numerica, vol. 10,
pp. 357–514, 2001.


	I Introduction
	II Background
	II-A Conic Optimization
	II-B Differentiating Through a Cone Program

	III The DCOL Algorithm
	III-A Optimization Problem
	III-B Primitives
	III-B.1 Polytope
	III-B.2 Capsule
	III-B.3 Cylinder
	III-B.4 Cone
	III-B.5 Ellipsoid
	III-B.6 Padded Polygon

	III-C Contact Points and Minimum Distance

	IV Examples
	IV-A Trajectory Optimization
	IV-A.1 ``Piano Mover'' Problem
	IV-A.2 Quadrotor
	IV-A.3 Cone Through an Opening

	IV-B Contact Physics

	V Conclusion

