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Fast Contact-Implicit Model Predictive Control
Simon Le Cleac’h1∗, Taylor A. Howell1∗, Shuo Yang2, Chi-Yen Lee2,

John Zhang2, Arun Bishop2, Mac Schwager3, and Zachary Manchester2

Fig. 1: Hardware demonstrations on a Unitree Go1 quadruped: stable trotting while being pushed (left), transitioning from
ground to standing against a wall (center), and placing two feet onto a step (right).

Abstract—We present a general approach for controlling
robotic systems that make and break contact with their envi-
ronments. Contact-implicit model predictive control (CI-MPC)
generalizes linear MPC to contact-rich settings by utilizing a
bi-level planning formulation with lower-level contact dynamics
formulated as time-varying linear complementarity problems
(LCPs) computed using strategic Taylor approximations about
a reference trajectory. These dynamics enable the upper-level
planning problem to reason about contact timing and forces,
and generate entirely new contact-mode sequences online. To
achieve reliable and fast numerical convergence, we devise a
structure-exploiting interior-point solver for these LCP contact
dynamics and a custom trajectory optimizer for the tracking
problem. We demonstrate real-time solution rates for CI-MPC
and the ability to generate and track non-periodic behaviours in
hardware experiments on a quadrupedal robot. We also show that
the controller is robust to model mismatch and can respond to
disturbances by discovering and exploiting new contact modes
across a variety of robotic systems in simulation, including a
pushbot, planar hopper, planar quadruped, and planar biped.

Index Terms—Model Predictive Control, Legged Robots, Con-
tact Modeling, Optimization and Optimal Control.

I. INTRODUCTION

CONTROLLING systems that make and break contact
with their environments is one of the grand challenges

in robotics. Numerous approaches have been employed for
controlling such systems, ranging from hybrid-zero dynamics
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[1, 2, 3], to complementarity controllers [4], to neural-network
policies [5, 6], and model predictive control (MPC) [7, 8].
There have also been numerous successes deploying such ap-
proaches on complex systems in recent years: direct trajectory
optimization and LQR on Atlas [9], smooth-contact models
and differential dynamic programming on HRP-2 [10, 11, 12],
zero-moment point and feedback linearization on ASIMO [13],
and MPC with simplified dynamics models on Cheetah [14]
and ANYmal [15]. However, reliable general-purpose control
techniques that can reason about contact events and can be
applied across a wide range of robotic systems without requir-
ing application-specific model simplifications, gait-generation
heuristics, or extensive parameter tuning remain elusive.

Our approach combines fast, differentiable rigid-body dy-
namics with contact, strategic approximations about a refer-
ence trajectory, and specialized numerical optimization tech-
niques for the application of local tracking control for systems
that experience contact interactions with their environments.
The result is a bi-level model predictive control algorithm that
can effectively reason about contact changes in the presence of
large disturbances while remaining fast enough for real-time
execution.

We formulate contact dynamics as a complementarity prob-
lem and devise a fast interior-point solver to reliably optimize
this feasibility problem. Smooth gradients are efficiently com-
puted through the non-smooth dynamics by exploiting inter-
mediate solutions from within this solver using implicit dif-
ferentiation. To enable real-time performance for control, we
pre-compute linearizations of the system’s dynamics, signed-
distance functions, and friction cones about a reference tra-
jectory, while explicitly retaining complementarity constraints
that encode contact switching behavior, resulting in a sequence
of lower-level time-varying linear-complementarity problems
(LCP) which represent the model’s contact dynamics. An
upper-level trajectory optimization problem is then optimized
using fast linear algebra. We refer to this algorithm as Contact-
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Implicit Model Predictive Control (CI-MPC).
Finally, we demonstrate that CI-MPC can generate new con-

tact sequences online and reliably track reference trajectories
despite significant model mismatch and while large external
disturbances are applied for a number of qualitatively different
robotic systems, including: a pushbot, and planar hopper,
quadruped, and biped systems in simulation; and on Unitree
Go1 quadruped hardware [16].

Our contributions are:
• Fast approximate contact dynamics that can be reliably

evaluated and efficiently differentiated with a custom
interior-point solver

• Structure-exploiting solvers for the contact-dynamics and
trajectory optimization problems

• A model predictive control framework for robotic systems
with contact dynamics

• A collection of simulation and hardware experiments
demonstrating the performance of CI-MPC on a variety
of robotic systems across a range of highly dynamic tasks

In the remainder of this paper, we first review related
work on control through contact with MPC, as well as
complementarity-based contact dynamics in Section II. Next,
we present a brief overview of MPC, outline the classic com-
plementarity formulation for contact dynamics, and provide
background on interior-point methods and implicit differenti-
ation in Section III. Then, we present CI-MPC in Section IV.
Results are presented in Section V including both simulation
and hardware experiments. Finally, we discuss our results,
limitations of this approach, potential directions for future
work in Section VI.

II. RELATED WORK

In this section, we review related work on MPC for the
control of dynamical systems that make and break con-
tact with their environments and provide an overview of
complementarity-based contact dynamics.

A. Model Predictive Control

Today, most successful approaches for controlling legged
robots utilize MPC in combination with simplified models and
heuristics originally pioneered by Raibert for hopping robots
[17]. The key insight of this work is that the control problem
can be decoupled into a high-level controller that plans body
motions while ignoring the details of the leg dynamics, and a
low-level controller that determines the necessary leg motions
and joint torques to generate the forces and torques on the
body determined by the high-level controller.

Arguably the most impressive control work on humanoids
has utilized centroidal dynamics with full kinematics to enable
Atlas to navigate various scenarios with obstacles [18] and
perform parkour [19]. Integrating hardware design and con-
troller synthesis has also recently enabled small humanoids to
perform agile acrobatic maneuvers in simulation [20].

There have also been impressive advances for quadrupeds,
achieved by designing hardware that aims to closely match the
modeling approximations made in the controller, e.g., building
very light legs [14]. Whole-body control, which has the benefit

of simpler overall control structures and the ability to leverage
a system’s dynamics, has been achieved at real-time rates
on hardware [21]. Approaches that utilize both force-based
MPC and whole-body control have also demonstrated agile
locomotion [22].

A major limitation of these prior works is that the control
policies are highly specialized to a specific robotic system.
In this work, we compare CI-MPC to a number of system-
specific control methods that perform quite well for their given
system, but do not generalize to other systems, whereas our
policy generalizes to many different systems that experience
contact interactions while achieving comparable or better
performance.

B. Complementarity-Based Contact Dynamics
The classic approach for simulating rigid-body dynamics

with contact interactions is a velocity-based time-stepping
scheme formulated as a linear complementarity problem (LCP)
[23, 24, 25]. The LCP searches for the next state of the system
while enforcing impact and friction constraints. Solvers for
this class of problems utilize pivoting methods [26], such
as Lemke’s algorithm [27], or interior-point methods [28].
Implementations of pivoting methods can be found in general-
purpose LCP solvers such as PATH [29], or physics engines
including: Bullet [23] and DART [24].

Derivatives of LCP-based contact dynamics can be effi-
ciently computing using implicit differentiation [30]. However,
the quality of these results is dependent on the method
employed for optimization. Pivoting approaches enforce strict
complementarity at each iteration, returning solutions at non-
differentiable points. As a consequence, this differentiation
will return subgradients that make, typically efficient, second-
order optimization slower and less reliable. In contrast,
interior-point methods relax the complementarity constraints at
each iteration, only converging in the limit. These intermediate
results can be implicitly differentiated to return smooth gradi-
ents [31]. Alternative approaches for computing gradients for
contact dynamics include utilizing auto-differentiation tools
[6] and analyzing the LCP solution to select subgradients [32].

In addition to simulation, contact dynamics represented as
LCPs have been utilized for planning. Collocation approaches
[33] directly encode the LCP problem as as constraints in order
to enforce contact dynamics, along with an objective specify-
ing desired behavior, in a large non-convex problem [34]. This
approach enables the optimizer to plan without pre-specified
mode sequences for locomotion and simple manipulation
tasks. Subsequent work improved this approach by introducing
higher-order integrators for the dynamics and a numerically
robust, exact `1-penalty for handling the complementarity
constraints [35]. Alternative rollout-based approaches utilize
LCPs for forward simulation and subsequently differentiate
through the solution of one-step dynamics in order to compute
derivatives for gradient-based optimization [36, 32].

Another popular contact-dynamics formulation is MuJoCo’s
soft-contact model [10], which solves a convex optimization
problem and trades physical realism for fast and reliable
performance. MuJoCo’s gradients are computed using a finite-
difference scheme since the collision detection routine is
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not differentiable. However, this approach is computationally
less efficient. An alternative model solved a strictly convex
quadratic program [37]. This method is amenable to implicit
differentiation, however it approximates the contact model.
Finally, the LCP complementarity constraints can be relaxed,
resulting in a soft-contact model that exhibits improved nu-
merical properties in some scenarios [38].

III. BACKGROUND

In this section, we provide technical background on MPC,
complementarity-based contact dynamics, interior-point meth-
ods, and implicit differentiation.

A. Model Predictive Control

Predictive control policies [39] optimize a planning prob-
lem:

minimize
x1:T ,u1:T−1

gT (xT ) +
T−1∑
t=1

gt(xt, ut)

subject to xt+1 = ft(xt, ut), t = 1, . . . , T − 1,
(x1 given),

(1)

for a given initial state in order to compute controls for a
dynamical system we aim to control. If planning is performed
at a sufficiently high rate, the sequence of open-loop plans
provide feedback. For a system with state x ∈ Rn, control u ∈
Rm, time index t, initial state x1, and discrete-time dynamics
f : Rn × Rm → Rn, the optimizer aims to minimize an
objective with costs, g : Rn × Rm → R, over a planning
horizon T .

Solving a (potentially) non-convex problem (1) online can
be unreliable or computationally too expensive. Instead, a
proxy problem is solved online that makes strategic approx-
imations. A common simplification is to track a reference
trajectory, τ̄ = (x̄1, ū1, . . . , x̄T ), denoted with an overbar (¯),
that is precomputed offline. In this setting, the computational
complexity for planning is reduced by utilizing dynamics:

δxt+1 = Atδxt +Btδut, (2)

linearized about the reference, where A = ∂f(x̄, ū)/∂x, B =
∂f(x̄, ū)/∂x, and the decision variables are relative to the
reference trajectory, i.e., δa = a−ā; and a quadratic objective:

1

2
δxTt Qtδxt + qTt δxt +

1

2
δuTt Rtδut + rTt δut, (3)

where Q = ∂2g(x̄, ū)/∂x2, q = ∂g(x̄, ū)/∂x,R =
∂2g(x̄, ū)/∂u2, r = ∂g(x̄, ū)/∂u, similarly comprise a
second-order expansion about the reference trajectory.

This formulation, potentially with additional affine state and
control constraints, is commonly referred to as linear MPC.
Without such constraints, the problem (1) with linear dynamics
(2) and quadratic objective (3) is the LQR problem [40] and
is efficiently solved with a backward Riccati recursion.

Predictive control iteratively optimizes (1), or an approxi-
mate version of it (2 - 3), for a given state, and the optimized
controls are utilized to compute an input for the system. After
the system evolves, the problem is re-optimized for a new state
in order to compute a new control for the system. By repeating

this procedure at a high rate, feedback control is achieved [41].
In practice, applying the controls optimized with time-varying
linearized dynamics and quadratic costs, to the actual nonlinear
system is extremely effective, especially for applications that
track a reference trajectory.

B. Complementarity-Based Contact Dynamics

Contact dynamics can be simulated with a velocity time-
stepping scheme [42], formulated as complementarity problem
[27]:

find q, γ, β, ψ (4)
subject to [M+(q − q−)−M−(q− − q−−)] /h+ hC =

JT (γ, β) +Bu, (5)
γ ◦ φ = 0, (6)
β ◦ [P (q − q−)/h+ ψ1] = 0, (7)

ψ ◦
[
µγ − 1Tβ

]
= 0, (8)

φ, γ ≥ 0, (9)

β, ψ, [P (q − q−)/h+ ψ1], [µγ − 1Tβ] ≥ 0,
(10)

that finds the next configuration of the system q ∈ Rnq

using implicitly defined velocities, v = (q − q−)/h ∈ Rnv .
Subscripts indicate a previous time step. This formulation
considers a single contact point, but generalizes to systems
with multiple contacts. The problem utilizes: the mass matrix
M : Rnq → Snv

++; dynamics bias C : Rnq × Rnv → Rnv

that includes Coriolis and gravitational terms; contact Jacobian
J : Rnq → R(p(d−1)+1)×nv that maps contact forces in the
contact frame into the generalized coordinates; input Jacobian
B : Rnq → Rnv×m that maps control inputs, typically
joint torques, into the generalized coordinates; P : Rnq →
Rp(d−1)×nv is a mapping from the generalized velocity space
to an overparameterized contact tangent space; time step
h ∈ R+; with normal force γ ∈ R and overparameterized
friction forces β ∈ Rp(d−1) that are constrained by a linearized
friction cone; ψ ∈ R is a dual variable associated with friction,
representing the magnitude of the contact point velocity;
signed-distance function, φ : Rnq → R, that returns distance
between a specified contact point on the robot (e.g., feet) and
the closest surface in the environment (e.g., the floor); and
where ◦ is an element-wise (Hadamard) vector product. We
use p to denote the overparameterization dimension (typically
p = 2) and d to denote the environment dimension d = 2 for
planar systems and d = 3 otherwise. This formulation extends
to multiple contact points.

The smooth dynamics (5) are discretized with a semi-
implicit Euler scheme [43]; complementarity constraints (6- 8)
encode contact switching behavior; impact is encoded in (6)
and (9); and friction terms (7-8) and (10), are derived from
the maximum dissipation principle [44].

Problem data include previous configurations q−, q−−, time
step h and control inputs u. A nonlinear formulation uses the
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following mappings:

M+ ←M(q), M− ←M(q−),

C ← C(q, (q − q−)/h), J ← J(q), (11)
B ← B(q), P ← P (q),

φ← φ(q),

evaluating these terms at the next configuration. In practice, a
partial linearization of the dynamics is performed to satisfy a
linear complementarity problem (LCP) [42], resulting in the
following mappings:

M+ ←M(q−), M− ←M(q−−),

C ← C(q−, (q− − q−−)/h), J ← J(q−), (12)
B ← B(q−), P ← P (q−),

φ← φ(q−) +N(q−)(q − q−),

where N = dφ/dq.

C. Interior-Point Method

Classically, LCPs are solved using active-set methods [29],
which strictly enforce complementarity at each iteration. An
alternative approach is interior-point methods [28, 45], which
relax these conditions during intermediate iterations, only
satisfying these constraints in the limit.

LCPs can be generally formulated as:

find x, y, z
subject to Ex+ Fy + f = 0,

Gx+Hy + z + h = 0,
y ◦ z = 0,
y, z ≥ 0,

(13)

with decision variables x ∈ Rn, y, z ∈ Rm and problem data
θ = (E,F,G,H, f, h) ∈ Rn×n×Rn×m×Rm×n×Rm×m×
Rn×Rm = Rp. Interior-point methods parameterize (13) by
a central-path parameter κ ∈ R+ that relaxes the following
bilinear constraint:

y ◦ z = κ1, (14)

where 1 a vector of ones.
The equality and relaxed bilinear constraints form a residual

vector or solution map, r : Rn+2m ×Rp ×R+ → Rn+2m,
that takes w = (x, y, z) ∈ Rn+2m, the problem data, and
central-path parameter as inputs. The problem data and central-
path parameter are fixed during optimization. In the context of
contact dynamics, these data encode the mechanical properties
of the robots, its current configuration and velocity, and
properties of the environment like friction coefficients. Newton
or quasi-Newton methods are used to find search directions
that reduce the norm of the residual and a backtracking line
search is employed to ensure that the inequality constraints
are strictly satisfied for candidate points at each iteration.
Once the residual is optimized to a desired tolerance, the
central-path parameter is decreased and the new subproblem
is warm-started with the current solution and then optimized.
This procedure is repeated in order to find solutions to (13)
with κ → 0 until the central-path parameter, also referred to
as complementary slackness, is below a desired tolerance.

Importantly, our interior-point method utilizes a predictor-
corrector algorithm [46] that leads to significantly improved
convergence. First, the corrector step modifies the pure Newton
search direction and typically reduces the number of iterations
required for convergence by half (compared to the pure search
direction). Second, the central-path parameter is adapted at
each iteration to prevent premature numerical ill-conditioning.
In practice, we find that this approach is significantly more
reliable and has improved convergence behavior compared to
prior work that employed relaxed complementarity conditions
[35].

D. Implicit Differentiation

In addition to simulating contact by solving a feasibility
problem, we would like to compute gradients of these dy-
namics, requiring us to differentiate through an optimization
problem. This is accomplished with implicit differentiation
[30].

An implicit function, r : Rk ×Rp → Rk, is defined such
that:

r(w∗; θ) = 0, (15)

for solutions w∗ ∈ Rk and problem data θ ∈ Rp. At a
stationary point, w∗(θ), the sensitivity of the solution with
respect to the problem data, i.e., ∂w∗

∂θ , can be computed by
utilizing the implicit-function theorem [30]. We expand (15)
to first order:

∂r

∂w
δw +

∂r

∂θ
δθ = 0, (16)

and then solve for δw:
∂w∗

∂θ
= −

( ∂r
∂w

)−1 ∂r
∂θ
, (17)

to compute the sensitivities. For the interior-point method (13),
the residual is:

r(w; θ) =

 Ex+ Fy + f
Gx+Hy + z + h

y ◦ z − κ1

 . (18)

A differentiable interior-point method is summarized in Al-
gorithm 1. Importantly, we can compute gradients for in-
termediate results, corresponding to non-zero values for the
central-path parameter, i.e., κgrad 6= 0. For additional details
about differentiating through intermediate results of contact
dynamics that are solved with interior-point methods, see [31].

IV. CONTACT-IMPLICIT MODEL PREDICTIVE CONTROL

In this section we present Contact-Implicit Model Predictive
Control, a tracking policy for systems that make and break
contact with their environments. First, we formulate time-
varying LCP contact dynamics that are selectively approxi-
mated about a reference trajectory. Then, we devise a fast
solver for the resulting LCP. Next, we discuss how to compute
smooth gradients through the dynamics. A bi-level planning
formulation, which utilizes these dynamics for direct trajectory
optimization [47], follows. To enable the policy to work well
in environments with uncertain terrain we propose a contact-
height heuristic. Finally, we summarize the approach and
provide an algorithm for CI-MPC.
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Algorithm 1 Differentiable Interior-Point Method

1: procedure OPTIMIZE(x, θ)
2: Settings: β = 0.5, γ = 0.1, εκ = 10−6, εr = 10−8

3: Initialize: y, z = 1, κ = 0.1, κgrad = 10−4

4: Until κ < εκ do
5: ∆w = ( ∂r∂w )−1r(w; θ, κ)
6: α← 1
7: Until (y, z)− α(∆y,∆z) > 0 do α← βα
8: Until ‖r(w − α∆w; θ, κ)‖ < ‖r(w; θ, κ)‖ do
9: α← βα

10: w ← w − α∆w
11: If ‖r(w; θ, κ)‖ < εr do κ← γκ
12: ∂w

∂θ ← Differentiate(w, θ, κgrad) . Eq. 17
13: Return w, ∂w∂θ

A. Time-Varying Contact Dynamics

We formulate alternative LCP dynamics that utilize a refer-
ence trajectory, resulting in the following mappings:

M+ ←M(q̄), M− ←M(q̄−),

C ← C(q̄, (q̄ − q̄−)/h), J ← J(q̄), (19)
B ← B(q̄), P ← P (q̄),

φ← φ(q̄) +N(q̄)(q − q̄).

The LCP problem, formulated for an interior-point method,
has the form:

find w
subject to C(w − w̄) +D(θ − θ̄) = 0

γ ◦ sφ = κ1,
ψ ◦ sψ = κ1,
β ◦ η = κ1,
γ, ψ, β, η, sφ, sψ ≥ 0,

(20)

with decision variables w = (q, γ, ψ, β, η, sφ, sψ), where
slack variables, sφ, sψ ∈ R, are introduced for convenience.
For the LCP formulation κ = 0, while the interior-point
method’s subproblems are specified by κ > 0.

Importantly, C and D are matrices that define a linear
system of equations resulting from approximations about the
reference trajectory and they are pre-computed offline. These
contact dynamics:

qt+1 = LCPt(qt−1, qt, ut), (21)

LCPt : Rnq ×Rnq ×Rm → Rnq , solve (20) and return the
configuration at the next time step. The contact forces at the
current time step can also be returned.

B. Fast Contact Dynamics

The most expensive procedure in evaluating the LCP and
computing gradients of a solution is solving the linear system
of equations:

Rw∆w = r, (22)

required by the interior-point method, where Rw = ∂r/∂w,
and ∆w is the new search direction.

To reduce the computational cost of this routine, we exploit
both the sparsity pattern and the property that most of Rw

remains constant across iterations and, therefore, can be pre-
factorized offline [48].

We partition the LCP variables (13) as follows: x = q,
y = (γ, ψ, β), and z = (η, sφ, sψ), and similarly split the
residual: r = (rx, ry, rz). The Jacobian’s sparsity pattern is:

Rw =

E F 0
G H I
0 diag(z) diag(y)

 , (23)

where I denotes the identity matrix. By exploiting sparsity in
the third row of (23), we can form the following condensed
system: [

E F

G H̃

] [
∆x
∆y

]
=

[
rx
r̃y

]
⇔ R̃w ∆w̃ = r̃, (24)

where:

H̃ = H − diag(y−1 ◦ z), (25)

r̃y = ry − y−1 ◦ rz, (26)

∆z = y−1 ◦ (rz − z ◦∆y), (27)

and y−1 denotes the element-wise reciprocal of vector y. This
term is always well-defined because a line search enforces
y > 0 at each iteration.

To solve for ∆w̃, we leverage the fact that, apart from the
bottom-right block, R̃w can be computed offline. We perform
a QR decomposition on the Schur complement of (24):

Q,R← QR(H̃ −GE−1F ), (28)

and then solve for the search directions:

∆y = −R−1QT (GE−1rx − r̃y), (29)

∆x = E−1(rx − F∆y). (30)

Additionally, E−1, GE−1, and GE−1F are precomputed
offline. Finally, after solving for ∆w̃, we obtain ∆z with cheap
vector-vector operations (27).

For a system with configuration dimension nq and c contact
points, the computational complexity of solving (22) with a
naive approach is O

(
(nq + 2cd)3

)
. Our structure-exploiting

approach is O(8c3d3) during the online phase. In practice, this
provides a factor of 15 speed-up, compared to LAPACK LU,
for evaluating the LCP dynamics across all the robotic systems
presented in this paper and, in turn, results in a factor of 2.5
speed-up for CI-MPC.

C. Gradients

Contact dynamics gradients are computed by differentiat-
ing through the LCP problem with respect to data: θ =
(q−−, q−, u), which could also include the time step, friction
coefficients, and other system values like masses or inertia
terms.

At fixed points, w∗κ, parameterized by a (potentially
non-zero) central-path value, gradients are computed using
implicit-differentiation. Importantly, at solution where κ ≈ 0,
this approach will return subgradients, which often fail to
provide useful information through contact events. Indeed,
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Algorithm 2 Contact-Implicit Model Predictive Control

1: procedure POLICY
2: Offline
3: τ̄ ← generate reference trajectory
4: LCPt ← generate fast contact dynamics
5: H ← set planning horizon,
6: Online
7: For i = 1, . . . ,∞
8: u← π(x) . Eq. (31)
9: x← dynamics(x, u)

10: End
End

Fig. 2: PushBot performing push recovery. A disturbance (red)
creates an impulse on the system and the policy generates a
new contact sequence that extends the prismatic joint toward
the right wall in order to make contact. After stabilizing,
PushBot pushes against the wall, eventually breaking contact,
in order to return to the nominal upright configuration.

these gradients lacks information about nearby potential con-
tact events (contact ↔ no contact) and nearby contact mode
switches (sticking ↔ sliding). However, we exploit interme-
diate results from the interior-point solver, where κ 6= 0,
in order to compute smooth gradients. Large values of κ
will produce smoother gradients than those computed with
small values of κ, which more closely approximates a true
subgradient at nondifferentiable points. Practically, we find
that smooth gradients, computed using intermediate results,
provide information through contact events.

TABLE I: Comparison between CI-MPC and MIQP policies
for PushBot example. For a fixed replanning rate of 25 Hz, we
report the mean and standard deviations for the optimization
times and compare this to the associated time budget (0.04
s). Both policies successfully regulate the system around the
equilibrium point. However, the MIQP policy is slower than
real-time, whereas the CI-MPC policy always remains within
time budget, ensuring real-time performance.

Policy Planning Time Real-Time

CI-MPC 0.014 ± 0.027s
MIQP 0.18± 0.09 s 5

D. Planning

The CI-MPC policy is formulated as:

u = π(x)



minimize
x1:H ,u1:H

H∑
t=1

1
2 (xt − x̄t)TQt(xt − x̄t)

+ 1
2 (ut − ūt)TRt(ut − ūt)

subject to xt+1 = LCPt(xt, ut),
t = 1, . . . ,H − 1,

x1 = x,
(31)

comprising an upper-level planning problem (1) that optimizes
a trajectory: τ = (x1, u1, . . . , xH , uH) ∈ R(2nq+m)H of
configurations and controls over a horizon H using a state
representation: xt = (q

(t)
t−1, q

(t)
t ), with two configurations.

This problem is solved using a direct trajectory optimization
approach. Lower-level LCP problems (4) enforce the dynamics
with the first state x1 fixed. For convenience, we overload
notation for the LCP dynamics:

LCPt(xt, ut) =

[
q
(t)
t

LCPt(q
(t)
t−1, q

(t)
t , ut)

]
, (32)

for state-based LCP dynamics, and define constraints,
kt(xt, ut, xt+1) = xt+1 − LCPt(xt, ut), that couple states
across adjacent time steps. The constraint Jacobian:

∇k =


−B1 I 0 0 0 0

0 −A2 −B2 I 0 0
0 0 0 −A3 −B3 I

. . .

 , (33)

where k = (k1, · · · , kH−1) ∈ R2nq(H−1), is comprised of
one-step dynamics Jacobians:

At =

[
0 I

∂LCPt

∂qt−1

∂LCPt

∂qt

]
, Bt =

[
0

∂LCPt

∂ut

]
. (34)

The planning objective is a convex quadratic function (3)
and velocities are penalized using finite-difference approxima-
tions. Because the problem is lifted by using states comprising
two configurations, these costs do not introduce coupling
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across more than one time step. The resulting Hessian of the
objective:

∇2J =


R1 0 0 0
0 Q2 0 0
0 0 R2 0

0 0 0
. . .

 , (35)

and its inverse:

(∇2J)−1 =


R−11 0 0 0

0 Q−12 0 0
0 0 R−12 0

0 0 0
. . .

 , (36)

are block diagonal and are pre-computed offline.
The resulting KKT system:[

∇2J ∇kT
∇k 0

] [
∆τ
∆ν

]
=

[
∇J +∇kT ν

k

]
, (37)

with dual variables ν ∈ R2nq(H−1) associated with the con-
straints, uses a Gauss-Newton approximation of the constraints
when computing the Hessian of the Lagrangian and is solved
using a sparse LDLT solver. In the following experiments
we utilize QDLDL, a general-purpose sparse solver, for its
efficient implementation [49].

E. Contact-Height Heuristic

To enable the policy to robustly adapt to unknown variations
in terrain height, we employ a simple heuristic that we find to
be effective in practice. The policy maintains a height estimate,
a ∈ Rc, for each contact and utilizes a modified signed-
distance function:

φMPC(q) = φ(q) + a, (38)

that is updated using the current contact height. When contact
is detected, the height estimate is updated. In simulation, a
threshold on the impact-force magnitude is set; and in practice,
force sensors can reliably detect such an event.

This simple heuristic does not affect the structure of (23)
and only requires c more addition operations to compute
r when evaluating the fast contact dynamics (22). In our
experiments, we find the heuristic to be effective and reliable
across unknown terrain for the systems tested.

F. Algorithm

CI-MPC comprises offline and online stages. The offline
stage generates a reference trajectory along with a set of
time-varying LCP problems. In this work we employ contact-
implicit trajectory optimization [35] to design these refer-
ences. Additionally, a planning horizon, typically less than
the total behavior duration, is specified. During the online
stage, planning is performed (1) for the current state over the
specified horizon, and the optimized control trajectory is used
to compute a control that is applied to the system. The CI-
MPC policy is summarized in Algorithm 2.

Fig. 3: Hopper in 2D performing parkour. The system tracks
the body (orange) and foot (blue) reference trajectories while
ascending three stairs before performing a front flip.

G. Heuristics

To enable real-time performance for the policy (31), a
number of heuristics are employed. First, the planning problem
is only solved approximately. Instead of optimizing until
convergence, a fixed number of iterations are performed and
then the current best solution is returned. This enables the
current plan to be improved but significantly reduces the total
computation required. Generally, we find that performance is
greatly improved by returning approximate solutions quickly,
enabling replanning with newer state information, compared
to returning higher quality solutions to planning problems
that are utilizing older state information. Second, the policy
extensively utilizes warm starting. Providing the optimizer
with a good initial guess for the solution greatly reduces the
number of iterations required to converge. Initially, the policy
utilizes the reference trajectory. At subsequent evaluations,
the previous best solution is used. Third, the LCP problems
are solved for a single value of the central path parameter
instead of a sequence that converges to zero. In practice, we
find that κ ≈ 1e-4 is a good balance between computation
time, physical accuracy, and gradient smoothness. Note, when
verifying the performance of the policy in simulation, we solve
the nonlinear contact dynamics complementarity problem (4)
to convergence, i.e., κ = 1e-6.

V. RESULTS

We demonstrate the CI-MPC algorithm in simulation and
on hardware by controlling a variety of robotic systems
that make and break contact with their environments. In the
examples we show that the policy can generate new contact
sequences online; is robust to disturbances, model mismatch,
and unknown terrain; and is faster than real-time, see Table
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TABLE II: Comparison between CI-MPC and the Raibert
heuristic for a hopper system on 4 scenarios: flat, sinusoidal,
and piecewise linear terrains; and a parkour stunt (Fig. 3). For
each terrain profile, we report the number of hops achieved
by the policy. For the parkour scenario, we report if the stunt
is successfully completed.

Policy Flat Sinusoidal Piecewise Parkour

CI-MPC +100 +100 +100
Raibert +100 +100 +100 5

IV. The code, including a Julia implementation of the policy
and all of the experiments, is available at:

https://github.com/dojo-sim/ContactImplicitMPC.jl.

A. Simulation

We verify the policy performance in simulation where
we solve the nonlinear contact dynamics complementarity
problem (4) to convergence. Additionally, all examples are
simulated using a different sample rate, typically 5-10× faster
than the reference trajectory, in order to ensure that the policy
is robust to sampling rates. For example, if the reference is
optimized with a time step of 0.1 seconds, then we simulate
the nonlinear dynamics with a smaller time step, 0.01 or 0.02
seconds.

PushBot: In this example, we demonstrate that our policy
can generate qualitatively new, unspecified contact sequences
online in order to respond to unplanned disturbances. The
system, PushBot, is modeled as an inverted pendulum with
a prismatic joint located at the end of the pendulum (Fig.
2). There are two control inputs: a torque at the revolute
joint and a force at the prismatic joint. The system is located
between two walls and has two contact points, one between
the prismatic-joint end effector and each wall.

PushBot is tasked with remaining vertical and the policy
utilizes a reference trajectory that does not include any con-
tacts. When we apply a large impulse to the system, the policy
generates a behavior that commands the prismatic joint to push
against the wall in order to stabilize. By tuning the policy’s
cost function we can generate different behaviors, including
maintaining contact to stabilize and pushing against the wall
in order to return to the nominal position. The latter behavior
is shown in Fig. 2.

We compare CI-MPC to a method that relies on a mixed-
integer quadratic progam (MIQP) formulation [50] applied to
a simplified version of the PushBot (an inverted pendulum
between two stiff walls). The MIQP minimizes a quadratic
objective function subject to piecewise-linearized dynamics.
Each linear dynamics domain corresponds to a single contact
mode, and discrete decision variables are introduced to encode
contact mode switches. Our CI-MPC approach is fast enough
to be run online, however, this is not the case for the MIQP
policy, as shown in Table I. Moreover, the complexity of
the MIQP increases exponentially with the number of contact
modes, making it an intractable approach for more complex

Fig. 4: Planar quadruped walking over uneven terrain. The
reference gait is optimized for flat ground. Our CI-MPC policy,
with orange center-of-mass and blue foot position trajectories,
is able to adapt online to the unmodeled variation in terrain
and track the reference trajectory.

Fig. 5: Quadruped tracking a reference trajectory (red) while
carrying an unmodeled 3-kg payload. We depict the torso
(orange) and front-left foot (blue) trajectories.

systems. Warm-starting the MIQP [51] may make this ap-
proach more amenable to online optimization.

Hopper: Inspired by the Raibert Hopper [17], we model
a 2D hopping robot with nq = 4 generalized coordinates:
lateral and vertical positions, body orientation, and leg length,
respectively; m = 2 controls: body moment, e.g., controlled
with an internal reaction wheel, and leg force; and a single
contact at the foot.

The centroidal-dynamics modeling assumption we make—
consistent with Raibert’s work—is to locate the leg and
foot mass at the body’s center of mass. This results in a
configuration-independent mass matrix and no bias term in
the dynamics.

The hopper is tasked with locomoting over unknown ter-
rain. The CI-MPC policy uses a reference trajectory that is
optimized with a flat surface and no incline. We compare our
policy to the Raibert heuristic, which we similarly tune for flat
ground and no incline. We observe that our policy is able to
adapt to the varying surface heights that range from 0-24 cm
and that the robot can slip multiple times and is able to recover
while traversing steep inclines. We find that, when tuned well,
the Raibert heuristic also works very well on terrains

Additionally, we task the hopper with climbing a staircase
and executing a front flip (Fig. 3). This complex trajectory
cannot be directly executed using the Raibert heuristic as it is
not a periodic hopping gait. Our policy, however, successfully
tracks this complex trajectory, illustrating the more general
capabilities of CI-MPC. Results are summarized in Table II.

Planar quadruped: We model a planar quadruped with nq =
11 configuration variables and m = 8 control inputs. The

https://github.com/dojo-sim/ContactImplicitMPC.jl
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system has four contacts, one at each point foot.
The quadruped is tasked with moving to the right over three

different terrains: flat, sinusoidal, and piecewise-linear surfaces
(Fig. 4). Additionally, we test the robustness of the CI-MPC
policy by introducing model mismatch. We provide the policy
with the nominal model of the quadruped while the simulator
uses a quadruped with a 3-kg payload, representing 25% of
its nominal mass. Despite the unmodeled load, the policy
successfully tracks the nominal gait with good performance.

We note that the same CI-MPC policy was used across
all quadruped experiments and no retuning was required to
transfer from the nominal case (flat terrain, no payload) to
more complex scenarios. Further, it is easy and intuitive to
rapidly retune the policy in order to achieve improved tracking
performance in the other scenarios.

Planar biped: We model a planar biped based on Pratt’s
Spring Flamingo [52] with nq = 9 configuration variables
and m = 7 control inputs. The system is modeled with four
contact points, one at the toe and heel of each foot.

The biped is tasked with moving to the right over three
different terrains: flat, sinusoidal, and piecewise-linear surfaces
(Fig. 6) using the same policy. In Table III, we compare this to
Pratt’s policy [52], which relies on a state-machine architecture
and a number of proportional-derivative controllers. Our CI-
MPC policy—with no additional tuning—can easily walk on
all of the terrains and reliably walks up inclines of up to ten
degrees. Pratt reports that Spring Flamingo can only walk up
inclines of five degrees without requiring the controllers to be
re-tuned [53].

Monte Carlo: In order to assess the robustness of CI-MPC,
we perform Monte Carlo analysis on two systems: the hopper
and planar quadruped. The robots are tasked with tracking a
reference gait and we initialize the systems with configurations
that are randomly perturbed from the reference trajectory. We
use 100 randomly sampled initial conditions for each system;
the hopper recovers from significant orientation offsets and the
quadruped is robust to large drops (Fig. 7).

B. Hardware

In this section we present hardware results that demonstrate
two capabilities of this work: 1) real-time performance of our
algorithm on hardware 2) the robustness of CI-MPC policies
to unmodeled disturbances. Three behaviors are executed on a
Unitree Go1 quadruped [16]: first, a trotting gait that is robust
to large external disturbances; second, a non-periodic motion
where the system moves towards a wall before balance against
it using its front feet; third, the system placing both of its feet
onto a step. Videos of the experiments are included with the
associated materials.

Point-foot model: We utilize a simplified point-foot model
of the quadruped that neglects leg dynamics. This model
comprises 36 states which include the positions and velocities
of the body and each foot. The orientation of the body
is represented with Euler angles. The controls are three-
dimensional forces applied to each foot, which is modeled
as a point mass. Reference motions are generated offline with
this model using contact-implicit trajectory optimization [35].

Fig. 6: Biped walking from left to right across flat (top),
sinusoidal (middle), and piecewise linear (bottom) terrain
using the same policy.

The primary reason for these modeling simplifications is to
reduce the online computational requirement when evaluating
the dynamics and their derivatives while still being able to
reason about new contact sequences online. Importantly, unlike
traditional convex quadratic programming policies [54], which
assume a fixed contact sequence for the feet, our model is
contact-implicit and enables new foot-step sequences to be
generated online.

Experimental setup: A reference trajectory generated offline
is tracked online using CI-MPC. A pre-tuned low-level con-
troller generates joint torques that aim to match the forces
specified by the policy that should be applied by each leg at
the foot. The CI-MPC policy is written in Julia and is pre-
compiled in order to interface with an existing C++ low-level
controller running at 1000Hz. State feedback to the CI-MPC
policy and the low-level controller is provided by a 1000Hz
Kalman filter which utilizes joint encoders, onboard IMU,
and external motion-capture tracking to estimate the robot
state. The policy, state estimator, and low-level controller run
on a computer equipped with an Intel i9-12900KS CPU and
64GB of memory. The joint torque commands are sent to the
quadruped via an ethernet connection. Additional information
is provided in Table V.

Trotting: In this example, the specified behavior is trotting
in place (Fig. 1). The reference trajectory is 0.8 seconds and is
repeated to form a continuous gait. The policy planning hori-
zon is 0.10 seconds and the model uses a time discretization
of 0.05 seconds. The policy runs at an average rate 100 Hz.

Wall stand: In this example, the specified behavior is
transitioning from four feet on the ground to standing against
the wall with two feet (Fig. 1). The reference trajectory is
19.75 seconds. The policy planning horizon is 0.15 seconds
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TABLE III: Comparison between CI-MPC and Pratt state-
machine [52] policies for flamingo system on flat and inclined
terrains. We report the number of steps taken by the robot on
the flat terrain and compare the maximum incline traversed by
our policy in simulation with reported results† [53].

Policy Flat Incline

CI-MPC +100 10 deg.
Pratt +100† 5† deg.

and the model uses a time discretization of 0.05 seconds. The
policy runs at an average rate of 100 Hz.

Step: In this example, the specified behavior has the
quadruped place its right foot onto a step, followed by its
left foot (Fig. 1). The entire reference trajectory is 7.0. The
policy planning horizon is 0.1 seconds and the model uses
a time discretization of 0.05 seconds. The policy runs at an
average rate of 100 Hz.

VI. CONCLUSION

CI-MPC is capable of generating dynamic behaviors by
robustly tracking reference trajectories through contact despite
disturbances, model mismatch, and uncertain environments. In
this section we conclude with a discussion of limitations and
directions for future research.

A. Limitations

We highlight important limitations including: approxima-
tions, contact model, and reliability, that should be considered
before deploying CI-MPC policies.

Approximations: For the online trajectory optimization
problem, strategically approximated contact dynamics are uti-
lized for planning. This enables expensive gradient computa-
tions and partial matrix factorizations to be performed in an
offline stage, in order to substantially reduce online compu-
tation. In the examples, we find that short planning horizons,
typically between 0.1 and 0.25 seconds, are sufficient. Despite
the approximations introduced by these simplifications, in
practice, the controls optimized for the fast contact dynamics
work well in simulation and on hardware. However, it remains
to be seen how well these approximations work for control of
highly dynamic behaviours or scenarios that require longer
planning horizons, particularly when deployed on hardware.

Contact model: The physics of hard contact produces non-
smooth and discontinuous gradients. With our custom interior-
point method for the contact dynamics solver, we can ef-
ficiently compute smooth gradients in a principled way by
exploiting intermediate results, parameterized by the central-
path parameter. Hard contact is simulated by returning results
from the contact dynamics solver with a central-path value
κsim = 1e-6, whereas gradients are computed using interme-
diate results from the solve parameterized by κgrad ≈ 1e-4.

During online optimization, we prioritize fast updates by
solving the trajectory-tracking problem to coarse tolerances. In
this context, imposing highly accurate contact physics would
be wasteful in terms of computational resources. As a result,
the central-path value for the planning dynamics is fixed to the

Fig. 7: Monte Carlo simulations of initial conditions for sys-
tems tracking a reference trajectory. 100 initial configurations
are randomly sampled for a hopper (top) and quadruped
(bottom). Perturbations from the reference initial configuration
include large translations, tilts, and joint angles offsets. For all
the samples, and both systems, the policy successfully recovers
to the reference gait.

gradient central-path value in order to reduce online compu-
tation. This selection was made to balance capturing accurate
physics with producing usefully smooth gradients. Empirically,
we observe that using these dynamics with slightly soften
contact dynamics enhanced the convergence of the trajectory-
tracking solver and likely enables the policy to more easily
discover new contact sequences. Importantly, the allowed
interpenetration with these tolerances is sub-millimeter—much
less than allowed by MuJoCo’s default settings—but, this
raises the question, is simulation of perfectly hard contact
actually necessary, or useful, for reliable planning and control
of non-smooth systems?

Reliability: Generating high-quality reference trajectories is
crucial for CI-MPC. Contact-implicit trajectory optimization
[34, 35] is a powerful tool for generating these trajectories.
However, it is notorious for poor convergence properties,
despite relying on robust large-scale constrained solvers for
non-convex problems and even good warm starting. This un-
reliability makes online optimization generally impractical—
motivating this work. Ultimately, for CI-MPC to be of prac-
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TABLE IV: The CI-MPC policy runs at real-time rates mean-
ing that the time required to compute the control is always
smaller than the reference time step and the policy is able to
successfully track the specified trajectory. Experiments are run
on a computer equipped with an Intel Core i9-9900 CPU and
32GB of memory.

System Planning Horizon Time Step Real-Time

pushbot 1.60 s 0.04 s
hopper (2D) 0.10 s 0.01 s
hopper (3D) 0.20 s 0.01 s
quadruped 0.16 s 0.016 s

biped 0.23 s 0.016 s

TABLE V: Hardware experiments with CI-MPC tracking
different reference trajectories on a Unitree Go1 quadruped.

Settings Trotting Wall Step
reference trajectory length 0.8 s 19.75 s 7.0 s

reference time step 0.05 s 0.05 s 0.05 s
policy planning horizon 0.1 s 0.15 s 0.1 s

policy rate 100 Hz 100 Hz 100 Hz

tical value, generation of references trajectories, even in the
offline setting, must be improved. This may be possible with
specialized solvers for contact-implicit trajectory optimization
[55], alternative rollout-based methods that leverage the reli-
ability of one-step contact dynamics [56], or learning-based
approaches [5].

Additionally, our hardware experiments demonstrate the
real-time capabilities of CI-MPC and its ability to be robust in
many scenarios. However, in practice, we find that the classic
convex MPC policy [57] is significantly more robust for gen-
eral locomotion because that policy has an additional online
foothold selection strategy (the Raibert strategy). Adding this
strategy to CI-MPC will likely increase its speed and reliability
to match the performance of the baseline convex MPC policy.
Performance will likely be improved further with a more
efficient C/C++ implementation that utilizes multi-threading
for parallel evaluations of the fast contact dynamics.

B. Future Work

In summary, we have presented fast differentiable contact
dynamics that can be utilized in an MPC framework that
performs robust tracking for robotic systems that make and
break contact with their environments. There remain many
exciting avenues to explore in future work. First, it should
be possible to perform higher-fidelity convex approximations
of the contact dynamics that utilize second-order friction cones
instead of its linearized approximation. This could enable
tracking of highly dynamic behaviors that leverage accurate
sliding contacts. Second, a natural extension of this work,
which was focused on locomotion, is to the manipulation
domain, potentially with quasi-static models, where control
through contact is similarly an open problem, but where dy-
namics are slower and more amenable to online optimization.
Third, in our hardware experiments, we utilized a simplified

planning model for the quadruped. Similar point-contact mod-
els should extend to bipeds and humanoid systems, potentially
even dexterous hands. Lastly, a library of template behaviors,
comprising CI-MPC policies, could be composed to enable
more diverse behavior online with a high-level agent com-
posing templates in a task-and-motion-planning framework in
order to generate complex long-horizon plans.
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